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Abstract

Bandwidth parameter estimation in univariate Kernel Density Estimation has tradi-
tionally two approaches. Rule(s)-of-Thumb (ROT) achieve ‘quick and dirty ’ estimations
with some specific assumption for an unknown density. More accurate solve-the-equation-
plug-in (STEPI) rules have almost no direct assumption for the unknown density but
demand high computation. This article derives a balancing third approach. Extending an
assumption of Gaussianity for the unknown density to be estimated in normal reference
ROT (NRROT) to near Gaussianity, and then expressing the density using Gram-Charlier
A (GCA) series to minimize the asymptotic mean integrated square error, it derives GCA
series based Extended ROT (GCAExROT). The performance analysis using the simulated
and the real datasets suggests to replace NRROT by a modified GCAExROT rule achiev-
ing a balancing performance by accuracy nearer to STEPI rules at computation nearer to
NRROT, specifically at small samples. Thus, the article also motivates to derive many
such ExROTs based on probability density function approximations through other infinite
series expansions.

Keywords: kernel density estimation (KDE), kernel bandwidth (smoothing) parameter, Gram-
Charlier A (GCA) series, scale measures, cumulant measures, rule(s)-of-thumb (ROT), ex-
tended rule(s)-of-thumb (ExROT) .

1. Introduction

Kernel based nonparametric estimation of continuous probability density function (PDF) is
widely used in statistics and data analysis. The estimation depends upon the selected kernel
function and its spread decided by the smoothing or bandwidth parameter. The selection
of kernel has limited impact on optimal PDF estimation, although Epanechnikov kernel is
the most optimal (Epanechnikov 1969) if an optimal bandwidth parameter is assumed to be
available. On the contrary, the optimal selection of bandwidth parameter avoids either too
noisy (’wiggly’) or too smooth an estimation.

There exists various bandwidth selection rules for kernel density estimation (KDE). They
differ by the selected and the way estimated criterion to measure accuracy of density esti-
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mation. Asymptotic mean integrated squared error (AMISE) between the estimated density
(f̂(·)) and the actual density (f(·)) is the most widely used performance criteria, though there
are many others (Park and Turlach 1992). Estimation of bandwidth parameter minimizing
AMISE requires estimating roughness of the second order derivative of the unknown density
to be estimated (R(f ′′(·))), where the roughness of a function is defined as an integration of
the squared function. The rule(s)-of-thumb (ROT) bandwidth selectors estimate R(f ′′(·)) as-
suming a reference distribution for f(·) (Silverman 1986). The simplest and the most popular
normal reference ROT (NRROT) assumes f(·) to be a normal density. ROT are not among
the most optimal, but are used either as a very fast reasonably good estimator or as a first
estimator in multistage bandwidth selectors. As ROT depends upon the scale parameter, ei-
ther standard deviation or interquartile range, of a distribution, they are called scale measures
(Janssen, Marron, Veraverbeke, and Sarle 1995). Then, there are plug-in (PI) methods for
bandwidth selection in KDE those plug-in kernel based estimate of R(f ′′(·)). Estimation of
any nth order derivative of f(·), denoted as (f (n)), n integer, in turn requires R(f (n+2)) esti-
mate and a so called pilot bandwidth to start with. The direct PI methods estimate the pilot
bandwidth with an assumption of some parametric family, usually Gaussian, for the unknown
density (Woodroofe 1970). More accurate solve-the-equation PI (STEPI) methods estimate
the pilot bandwidth as a nonlinear function of the bandwidth of interest (Sheather 1983,
1986a; Park and Marron 1990; Sheather and Jones 1991). Minimization of such a non-linear
equation using iterative methods demand high computation of the order of O(N2) usually,
where N denotes number of samples. But Raykar and Duraiswami (Raykar and Duraiswami
2006) derived ε-exact approximation algorithm based STEPI method, referred in this article
as εSTEPI, requiring O(N +M) order of computation, where M denotes selected number of
evaluation points. There are also available some cross-validation (CV) techniques for band-
width selection in univariate KDE (Scott and Terrell 1987; Jones, Marron, and Sheather
1996). Usually, they have high estimation variance and demand high computation. Also,
very often they find an under-smooth bandwidth parameter (Marron 1996). A brief survey
of data driven bandwidth selectors in univariate KDE is provided in (Park and Marron 1990;
Jones et al. 1996; Park and Turlach 1992; Sheather 1986b; Sheather et al. 2004; Heidenreich,
Schindler, and Sperlich 2013). There has also been some efforts towards exploring Bayesian
approach, as well, localized bandwidth estimation for KDE (Kulasekera and Padgett 2006;
Cheng, Gao, and Zhang 2019). Interested users may explore many other monographs and
articles discussing the topic on univariate and multivariate KDE in a more generalized frame-
work of non-parametric estimations and kernel smoothing (Silverman 1986; Wand and Jones
1994; Simonoff 1996; Scott 2012; Turlach et al. 1993; Izenman 1991; Hwang, Lay, and Lipp-
man 1994; Ćwik and Koronacki 1997). Overall, the ROT or scale measures for bandwidth
estimation are simple and fast but lack accuracy. And, the STEPI methods are quite accu-
rate but demand high computation. So, a data dependent bandwidth parameter selection
technique for KDE that balances both accuracy and computation is needed, and is the goal
of this article.

The article achieves this goal by proposing a novel class of Extended ROT (ExROT) for
bandwidth selection in univariate KDE. The assumption of a specific reference density for f(·)
to estimate R(f ′′) in ROT is too restrictive. Intuitively, expressing f(·) in terms of an infinite
series of higher order statistics based on a more generalized assumption to estimate R(f ′′)
should result into a better bandwidth selection rule. As a verification and demonstration
to this intuition, the article derives a bandwidth selection rule by extending the Gaussian
assumption for f(·) in NRROT to near Gaussian assumption. The near Gaussian assumption
facilitates use of cumulants based Gram-Charlier A (GCA) series as an approximation to
f(·) for the estimation of R(f ′′(·)). The extended assumption justifies the nomenclature
ExROT for this class of bandwidth estimators and GCAExROT for this specific GCA based
ExROT. Also, as they depend upon higher order cumulants unlike the Scale Measures, those
just depend upon the scale parameter, they are named Cumulant Measures for bandwidth
selection in KDE.
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The empirical analysis considered performance measurement against both the simulated, with
varying distributions and varying sample sizes from 50 to 50000, and real data setsusing min-
imum MISE as the performance measure. It proved GCAExROT being better than NRROT
for the KDE of unimodal normal mixture densities suggested as test densities by Marron
and Wand (1992). But the same estimator proved to be the worst performer compare to the
rest for KDE of multimodal normal mixture densities from the same set. The article anal-
ysed that the poor performance was due to the misleading estimations of standard deviation
and kurtosis for multimodal densities. To overcome such an overestimation of standard de-
viation, Silverman (Silverman 1986) suggested a modified NRROT, identified as Silverman’s
ROT (SROT). Along the same lines, the article derives a modified GCAExROT, identified
as GCAk4ExROT, rule. The empirical simulations proved GCAk4ExROT better than both
the NRROT and SROT at any number of samples, as well, comparable to εSTEPI at small
samples. Importantly, the GCAExROT rules achieve such an improved performance at the
computational cost comparable to that of ROT, which is quite less compare to that of εSTEPI.
The success of GCAk4ExROT over NRROT and SROT opens the scope of finding many such
extended rules based on other existing infinite series expansions of a specific reference PDF.

The rest of the article is organized as under. Section 2 discusses necessary background on
KDE and AMISE criteria for bandwidth selection. Section 3 derives the novel GCAExROT
rule for KDE of one dimension. It is empirically verified for its performance against varying
density types at a sample size of 50000 in Section 4. The reasons for poor performance
of GCAExROT in multimodal densities are analyzed and a modified GCAExROT rule is
suggested in Section 5. The new rule is verified for its performance at steady state in the
same section. Section 6 tests all the proposed bandwidth estimators against varying number
of samples, varying distributions at small samples and against real datasets. Finally, Section
7 concludes the article.

2. Bandwidth selection criteria and selectors in univariate KDE

Let there be a random variable X with an unknown PDF f(x), x ∈ R. Given N realizations
x1, x2, . . . , xN of X, the kernel density estimate f̂(x) is given by

f̂(x) =
1

N

N∑
i=1

1

h
K
(
x− xi
h

)
, (1)

where K(x) is a kernel function and h is a bandwidth parameter deciding spread of the kernel.
Usually, K(x) is a symmetric PDF, i.e. it satisfies the following properties:

K(x) ≥ 0,

∫ ∞
−∞
K(x)dx = 1,

∫ ∞
−∞

xK(x)dx = µ1(K) = 0,

∫ ∞
−∞

x2K(x)dx = µ2(K) <∞.

The accuracy of a PDF estimation can be quantified by available distance measures between
PDFs, such as the mean integrated absolute error, the MISE, the Kullback-Leibler divergence
and many others. Minimizing a selected distance measure over varying h obtains an optimal
h. The most widely used criteria MISE or IMSE (Integrated Mean Square Error) is given as

MISE(f̂(x)) = E

{∫ ∞
−∞

(f̂(x)− f(x))2dx

}
=

∫ ∞
−∞

Bias2(f̂(x))dx+

∫ ∞
−∞

Var(f̂(x))dx. (2)

The assumptions that the underlying unknown density is sufficiently smooth, i.e., all deriva-
tives exist, the kernel has finite fourth order moment, as well, limN→∞ h = 0 and limN→∞Nh =
∞, i.e., h reduces to 0 at a rate slower than 1/N , obtains (Silverman 1986) an asymptotic
large sample approximation of MISE as

AMISE(f̂(x)) =
h4

4
µ22(K)R(f ′′) +

1

Nh
R(K), (3)
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where R(f ′′) =
∫
R (f ′′(x))2dx and R(K) =

∫
RK

2(x)dx. In general, R(g) =
∫
g2(x)dx is

identified as the roughness of function g(x). The detailed derivation of AMISE can be found
in Appendix 7. Equation (3) proves that the smaller bandwidth values will reduce the esti-
mation bias but increase the estimation variance and vice-versa. An optimal h minimizing
AMISE(f̂(x)) in Equation (3) can be given as:

hAMISE =

(
R(K)

µ22(K)R(f ′′)N

) 1
5

= (CN)−1/5 , where C =
µ22(K)R(f ′′)

R(K)
.

(4)

Various rules for bandwidth parameter selection based on minimising AMISE criteria differ
in the way R(f ′′), the only unknown parameter in Equation (4), is estimated. With the

assumption of Gaussian PDF for f(x), R(f ′′) = 3σ−5

8
√
π

, where σ is the standard deviation of

f(x). Also, for a standard Gaussian kernel µ2(K) = 1 and R(K) = 1
2
√
π

. Using them with

Equation (4) obtains the simplest NRROT as

hNR = 1.0592σN−1/5. (5)

For more details on bandwidth selectors, refer (Silverman 1986; Wand and Jones 1994; Si-
monoff 1996).

3. The Gram-Charlier A series based extended ROT

Bandwidth parameter selection in a one dimensional KDE using AMISE criteria needs the
estimation of roughness of second order derivative of the unknown density to be estimated.
Instead of Gaussianity, near Gaussianity assumption for an unknown density will allow to
approximate it by GCA series expansion. The GCA series expands an unknown PDF as a
linear combination of the increasing order differentiations of Gaussian reference PDF, where
the coefficients of expansion involve cumulant differences between those of an unknown PDF
and a Gaussian reference PDF.

Let there be a random variable X with PDF f(x), x ∈ R, characteristic function Fx and
cumulant generating function (CGF) C(λ). By definition,

Fx(λ) = exp (C(λ)) = exp

[ ∞∑
k=1

ck
(iλ)k

k!

]
, (6)

where ck denotes kth order cumulant of f(x). Let the Gaussian reference PDF G(x;µ, σ) =
1√
2πσ

exp
[
−1

2

(x−µ
σ

)2]
, where µ is the mean parameter and σ is the standard deviation, be

with γk as the kth order cumulant. Let ck − γk = δk or ck = γk + δk. Also, it is known that
the characteristic function and the PDF are the Fourier transform (F) of each other, in the
sense they are dual. Then, re-writing Equation (6) obtains

Fx(λ) = F (f(x)) = exp

[ ∞∑
k=1

δk
(iλ)k

k!

]
exp

[ ∞∑
k=1

γk
(iλ)k

k!

]
=

[ ∞∑
k=0

αk
(iλ)k

k!

]
F(G(x;µ, σ)), (7)

where
∞∑
k=0

αk
(iλ)k

k!
= exp

[ ∞∑
k=1

δk
(iλ)k

k!

]
. (8)

It is evident from Equation (8) that the αk are related to the cumulant differences δk in the
same manner as the moments are related to the cumulants. Taking inverse Fourier transform
(F−1) of the above Equation (7) and using the property F−1

(
(iλ)kF(G(x))

)
= (−1)kD(k)G(x),



Austrian Journal of Statistics 145

where D denotes derivative operator with respect to x and D(k) denotes kth order derivative
operator, obtains GCA series expansion of f(x) as

f(x) =

∞∑
k=0

αk
(−D)(k)G(x)

k!

or f(x) = exp

[ ∞∑
k=0

(ck − γk)
(−D)kG(x;µ, σ)

k!

]
,

(9)

where G(k)(·) denotes kth order derivative of Gaussian. The derivation is a revised version,
using a Gaussian density as a reference density, of the Generalized Gram-Charlier (GGC)
series expansion derived in a compact way by Berberan-Santos (Berberan-Santos 2007). There
are many other ways to derive univariate GCA series (Hald 2000) or univariate Generalized
Gram-Charlier (GGC) series (Schleher 1977; Cohen 1998, 2011).

The kth order derivative of Gaussian is given by

D(k)G(x;µ, σ) =
1

σk
(−1)kHk

(
x− µ
σ

)
G(x;µ, σ), (10)

where Hk is the kth order Hermite polynomial, expressed using recursion as

H0(x) = 1, H1(x) = x, Hk+1(x) = xHk(x)− d

dx
Hk(x). (11)

Choosing the first and second order cumulants of the unknown PDF to be the same as those
of the reference Gaussian PDF, i.e. c1 = γ1 = µ and c2 = γ2 = σ2, and taking approximation
upto fourth order cumulants obtain

f(x) ≈
[
1 +

c3
3!σ3

H3

(
x− µ
σ

)
+

c4
4!σ4

H4

(
x− µ
σ

)]
G(x;µ, σ). (12)

Taking derivative twice with respect to x of the Equation (9) for GCA series yields:

f ′′(x) = exp

[ ∞∑
k=0

(ck − γk)
(−D)(k+2)G(x;µ, σ)

k!

]
. (13)

Choosing c1 = γ1 = µ, c2 = γ2 = σ2, approximation up to fourth order cumulants and using
z = x−µ

σ obtain

f ′′(x) ≈
[

1

σ2
H2(z) +

c3
3!σ5

H5(z) +
c4

4!σ6
H6(z)

]
G(x;µ, σ). (14)

By definition,

R(f ′′) =

∫
R

[
1

σ2
H2(z) +

c3
3!σ5

H5(z) +
c4

4!σ6
H6(z)

]2
G2(x;µ, σ)dx. (15)

The simplification is obtained using the popularly known Gaussian Integral and its variants,
mention as under: ∫ ∞

−∞
e−ax

2
dx =

√
π

a
(16)∫ ∞

−∞
xke−ax

2
dx =

{
(k)!!

(2a)k/2

√
π
a , for k even

0, for k odd,
(17)
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where (k)!! = (k − 1)(k − 3)(k − 5) · · · 1 is called the odd factorial of k. Combining these
integrals with Equation (11) obtains

T1 =

∫ ∞
−∞

G2(z)

[
1

σ2
H2(z)

]2
dx =

1

σ5
3

8
√
π
,

T2 =

∫ ∞
−∞

G2(z)

[
1

σ5
H5(z)

]2
dx =

1

σ11
945

64
√
π
,

T3 =

∫ ∞
−∞

G2(z)

[
1

σ6
H6(z)

]2
dx =

1

σ13
10395

128
√
π
,

T4 =

∫ ∞
−∞

G2(z)

[
2

σ7
H2(z)H5(z)

]
dx = 0,

T5 =

∫ ∞
−∞

G2(z)

[
2

σ11
H5(z)H6(z)

]
dx = 0,

T6 =

∫ ∞
−∞

G2(z)

[
2

σ8
H2(z)H6(z)

]
dx =

1

σ9
105

16
√
π
.

(18)

Simplifying Equation (15) using Equation (18) brings

R(f ′′) =
1

σ5
3

8
√
π

[
1 + 1.0938k23 + 0.3760k24 + 0.7292k4

]
, (19)

where k3 = c3/σ
3 denotes skewness and k4 = c4/σ

4 denotes kurtosis (truly speaking, excess
kurtosis) of a random variable. Using R(f ′′) in Equation (19) into Equation (4) obtains the
Gram-Charlier A (GCA) series based Extended Rule-of-Thumb (GCAExROT) for bandwidth
selection in one dimensional KDE using Gaussian kernel as under:

hGCA = 1.0592σ(CN)−
1
5 ,

where C = 1 + 1.0938k23 + 0.3760k24 + 0.7292k4.
(20)

The constant C obtained for some of the special cases, and described as under, better explains
GCAExROT:

C =


1, if both k3 = k4 = 0, i.e., Gaussian PDF

1 + 0.3760k24 + 0.7292k4, if k3 = 0, i.e., symmetric PDF

1 + 1.0938c23 + 0.3760c24 + 0.7292c4, if σ = 1.

(21)

As evident, NRROT is one special case of GCAExROT when k3 = k4 = 0.

4. Verification of the GCAExROT bandwidth selector

To verify empirical validity of the derived GCAExROT bandwidth selector, a simple experi-
ment was done. The experiment measures the bandwidth estimator’s performance on KDE of
simulated sources with varying distributions. There was selected a set of 15 normal mixture
densities, used as a test-bed for bandwidth estimators in one dimensional KDE by Marron
and Wand (Marron and Wand 1992) and shown in Figure 1. To understand the steady state
performance, the number of samples were kept 50000. There were considered 100 simulation
trails. GCAExROT performance was compared with those of NRROT, as the representative
of ROT methods, and εSTEPI, as the representative of STEPI methods. The performance
comparison was against three parameters – the value of estimated bandwidth, the MISE be-
tween the estimated and the actual PDFs and the actual time taken (in Seconds) to estimate
the bandwidth. The Speed-up achieved by GCAExROT over εSTEPI is also used for compar-
ison, where the Speed-up is defined as the ratio of estimation time by εSTEPI to estimation
time by GCAExROT.
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Figure 1: The normal mixture densities proposed by Marron and Wand (Marron and Wand 1992) as a test-
bed for performance comparison of various bandwidth selection rules for Kernel Density Estimation (KDE)

Table 1 shows the results as mean of 100 trials. The boldface values denote the best per row,
i.e., the best bandwidth estimator giving the least MISE for a density in the first column. The
boldface italic values in the table denote a better between NRROT and GCAExROT with the
same criteria. The results exhibit εSTEPI as the best bandwidth estimator at 50000 samples
giving the least MISE, except for Gaussian and slightly skewed unimodal distributions. For all
unimodal distributions other then the Gaussian, i.e., for skewed, strongly skewed, kurtotic and
outlier distributions, GCAExROT has been better than NRROT. Among them, for skewed
unimodal distribution it is even better than εSTEPI. For all multimodal distributions, except
the claw distribution, NRROT performance is better than that of GCAExROT. The band-
width comparison in the table shows that for all distributions, except the Gaussian, smaller
the bandwidth better the performance in terms of smaller the MISE. The time comparison in
the same table shows that the mean time to estimate the bandwidth parameter using NRROT
is of the order of a few tenths of millisecond. This includes the time to estimate standard
deviation for the rule. The estimation time for GCAExROT is slightly more than that for
NRROT and in the range of a few milliseconds at the given 50000 samples. The added extra
time includes the time to estimate the third and fourth ordered cumulants. The bandwidth
parameter estimation time for εSTEPI is of the order of a few tens of second. The mean



148 GCA series Based ExROT for Univariate KDE

Table 1: Performance comparison of normal reference Rule-of-Thumb (NRROT), Gram-Charlier A series
based extended ROT (GCAExROT) and ε-exact approximation algorithm based solve-the-equation plug-in
(εSTEPI) bandwidth selectors for one dimensional Kernel Density Estimation (KDE) against the normal
mixture densities by Marron and Wand (Marron and Wand 1992) based on the estimated bandwidths, the
mean of the integrated square error (MISE) between the estimated and the actual densities and the time to
estimate the bandwidth were used as the performance measures. There were used 50000 samples. The table
entries show the mean of 100 trials. The boldface MISE values denote the smallest and the boldface italic
values denote the smaller between those due to NRROT and ExROT corresponding to the density in each row.

Bandwidth (h)*10 MISE*106 Time (in Sec) Mean
PDF NR GCA εSTE NR GCA εSTE NR GCA εSTE Speed

ROT Ex PI ROT Ex PI ROT ExROT PI -up
ROT ROT ∗104 ∗103

a 1.217 1.216 1.214 1.403 1.404 1.406 14.059 9.145 7.079 828.1
b 0.993 0.811 0.819 1.801 1.729 1.730 9.154 8.266 10.701 1334.3
c 1.263 0.889 0.200 36.988 26.100 4.038 8.401 8.350 54.205 6871.6
d 0.995 0.807 0.203 30.331 22.731 3.740 8.671 8.408 62.240 7613.2
e 0.401 0.138 0.129 19.221 4.435 4.421 9.355 8.525 78.986 9773.0
f 1.463 1.596 0.970 2.024 2.268 1.588 8.696 8.389 10.246 1261.3
g 1.998 2.137 0.924 3.676 4.140 1.649 8.836 8.421 10.981 1340.7
h 1.332 1.383 0.737 3.093 3.271 1.897 8.336 8.392 15.117 1872.4
i 1.552 1.690 0.788 3.453 3.931 1.796 7.487 8.336 11.518 1438.7
j 1.057 1.052 0.243 23.759 23.637 3.515 12.339 8.613 46.385 5761.9
k 1.457 1.590 0.900 7.798 7.910 7.363 7.630 8.479 10.779 1313.4
l 1.355 1.361 0.322 16.639 16.683 5.282 10.736 9.447 49.793 5489.7

m 1.449 1.576 0.462 11.183 11.681 5.806 9.139 8.970 23.853 2765.2
n 1.999 2.111 0.280 32.276 33.219 8.822 19.356 8.353 33.923 4212.8
o 2.057 2.224 0.230 32.408 33.856 4.637 16.801 10.363 36.925 4463.6

Speed-up by GCAExROT over the εSTEPI is of the order of a few thousands. Throughout
the article, the timings are just to provide relative references and are on a machine Intel
2.5 GHz core i5 with 4 GB 1.6 GHz DDR3 RAM and MATLAB R2014b. The operating
system for the experiments on a set of normal mixture densities by (Marron and Wand 1992)
was MacOS X EI capitan (version 10.11.6) and for the experiments on a set of Generalized
Gaussian densities (GGD) was MacOS Mojave (version 10.14.4).

Overall, GCAEXROT has achieved intermediate level accuracy in bandwidth estimations for
KDE of non-Gaussian univariate densities but the same proposed bandwidth estimator has
performed the worst, even poorer than NRROT, for the multimodal densities in the test.
The reasons must be analysed and if possible the bandwidth estimator should be improved.
The next session tries to understand how the higher order cumulants affect the bandwidth
estimated by GCAExROT and how it can be modified to get the improved performance.

5. GCAExROT: understanding and modification

Equation (20) interprets that hGCA adjusts hNR in Equation (5) for kurtosis and skewness
through the constant C−1/5, which works as a scaling coefficient.

As in Equation (21), given k3 = k4 = 0 causes the scaling coefficient C = 1 and GCAExROT
is the same as NRROT. The left panel of the Figure 2 plots the skewness versus the scaling
coefficient C−1/5 keeping k4 = 0 in Equation (20), i. e., considering the effect of skewness
parameter independent of the kurtosis parameter. The plot shows that the skewness, whether
positive or negative, scales down hNR to give effectively hGCA < hNR.

Similarly, the right panel in Figure 2 shows the plot of kurtosis versus scaling coefficient
C−1/5 keeping k3 = 0, i. e., the effect of kurtosis independent of the skewness. The solid line
plot corresponds to GCAExROT and can be understood in four parts. Given the unknown
density has k4 > 0, i.e., it is superGaussian, implies C−1/5 < 1 and hGCA < hNR. Given
the unknown density is subGaussian with 0 > k4 > −1.9394, implies C < 1, C−1/5 > 1 and
hGCA > hNR. Also within this range, for 0 > k4 > −1, hGCA is increasing but thereafter it
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Figure 2: Scaling factor C−1/5 independently due to: (a) Skewness (k3) in GCAExROT and its modification,
(b) Kurtosis (k4) in GCAExROT (Solid Line) and GCAk4ExROT (Dashed Line).

is decreasing. Further, hGCA < hNR for densities with k4 < −1.9394, those giving C−1/5 < 1.

GCAExROT was expected to be better than NRROT due to its widen assumption of near-
Gaussianity on unknown density. The assumption fits well the unimodal normal mixture den-
sities among the test-bed densities and that’s why empirically for these densities GCAExROT
gave better accuracy than NRROT. This justifies the bandwidth parameter estimated and
in turn the scaling provided by GCAExROT over NRROT based on the skewness and the
kurtosis parameters. But then why not the similar performance repeated for multimodal
distributions? The comparison of estimated bandwidths in Table 1 reveals that the band-
width parameters estimated by GCAExROT for multimodal densities were larger than cor-
responding those by NRROT. This confirms that the kurtosis estimated was in the range
0 > k4 > −1.9394 as in Figure 2 (b). Examination of the kurtosis value of the generated
multimodal test densities reconfirmed this, empirically. This implies that the combination of
multiple modes in these densities resulted into underestimated kurtosis and sub-Gaussianity.
Thus, the estimated kurtosis failed to represent the local nature of the densities correctly,
which consequently, resulted into wrong bandwidth and poor density estimates. Similarly,
the standard deviation also gets overestimated locally in case of multimodal distributions.
Summarizing, the globally estimated cumulants as per their definitions, like standard devia-
tion and kurtosis, cause the estimated bandwidth to be wrong locally.

5.1. Modified GCAExROT proposal

Ideal remedy to get the correct bandwidth through GCAExROT would be to estimate the
kurtosis and standard deviation parameters locally for all the modes in case of KDE of mul-
timodal density. But this will add more complexities and not the goal of a simple ROT
and ExROT class of bandwidth estimators. Instead, a correction mechanism to avoid such
overestimations or underestimations, validated on empirical and real data, would be a more
suitable solution. Historically, to overcome oversmoothing of NRROT due to the overestima-
tion of standard deviation, Silverman suggested a correction mechanism. The modified rule,
identified as the Silverman’s ROT (SROT), simply scales down ROT and given as :

hSROT = 0.9σN−1/5. (22)

Along the same line, this section derives a modified GCAExROT rule by providing corrections
to Equation (20). The overestimation of standard deviation can be taken care in the same
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way as done for SROT, i.e., the coefficient 1.0592 should be replaced by 0.9. The correction
for underestimated kurtosis should take care of two aspects: for a given density having local
modes with positive kurtosis either the estimated global kurtosis is reduced but still positive
or the estimated value is reduced to such an extent that it becomes negative. For example,
if the absolute value of estimated kurtosis is considered as a correction mechanism, then it
will take care of the latter condition but not the former. So, as a remedy and correction to
the underestimated kurtosis, the article suggests to use the actual kurtosis value instead of
the excess kurtosis value, i.e., k4 + 3. Accordingly, the negatively estimated kurtosis will be
turned positive and the positively estimated kurtosis will be increased. Thus, the remedy takes
care of both the aspects of underestimated kurtosis. Also, instead of verifying whether the
distribution is multimodal or unimodal before the actual application of bandwidth selection
rule, the correction is always applied to match the goal of simplification. This defines the
modified rule GCAk4ExROT as

hGCAk4 = 0.9σ(CN)−
1
5 ,

where C = 1 + 1.0938k23 + 0.3760(k4 + 3)2 + 0.7292(k4 + 3).
(23)

The dashed line plot in the right panel of Figure 2 shows kurtosis versus scaling coefficient
C−1/5 in GCAk4ExROT. As can be seen, for Gaussian density, i.e. k4 = 0, GCAk4ExROT
gives C = 6.5716 and thus scales down hSROT by a factor of C−1/5 = 0.6862. This may
degrade the performance for Gaussian and slightly near-Gaussian densities. Thus, the new
rule should be verified for its performance on the standard test-bed, as well, specifically for
densities with kurtosis range near that of Gaussian.

5.2. Performance of GCAk4ExROT on the standard test-bed

This section verifies the modified GCAExROT bandwidth selection rule, GCAk4ExROT,
for its steady state performance at sample size of 50000. The experiment was repeated for
the new rules on the set of normal mixture densities in Figure 1. Comparison of MISE
between the actual and the estimated densities due to the estimated bandwidths by NRROT,
GCAExROT, SROT, GCAk4ExROT and εSTEPI bandwidth selection rules are shown in
Table 2. The estimated bandwidths by SROT and GCAk4ExROT are also reported in the
same table. As the bandwidths by rest of the bandwidth selectors have already been reported,
they are not repeated again. The table entries denote the mean of 100 trials. The boldface
values show the least MISE per row, i.e., the best bandwidth estimator for a given density type.
The boldface italic values denote the best bandwidth estimator among all except εSTEPI to
provide comparison among the ROT and the ExROT class bandwidth estimators.

It can be observed that GCAk4ExROT has been the second best among all the bandwidth
estimators and the best among ROT and ExROT class of bandwidth estimators for the KDE of
all the multimodal densities, except the Bimodal density for which it has been the best among
all. But this performance of GCAk4ExROT is at the cost of slight loss of performance for
Gaussian and slightly skewed unimodal densities compare to GCAExROT, as expected. The
results show GCAk4ExROT performance slightly degraded even for the outlier density, but it
should be noted that the table entries for MISE are of the order of 10−6 and both GCAExROT
and GCAk4ExROT have their performances better than both NRROT and SROT. Overall,
the experiment here validates that the modified GCAExROT rule has improved performance
over GCAExROT for its steady state behaviour at 50000 samples. This motivates to test it
further for its performance.

5.3. Performance of GCAk4ExROT on densities with varying Kurtosis

This section verifies the GCAk4ExROT for KDE of densities with varying kurtosis, as they
represent more ideal set of densities and explain the bandwidth corrections over GCAExROT.
The densities were generated using symmetrical and unimodal Generalized Gaussian Density
(GGD) class of densities with varying the shape parameter β. A density with β value of 2
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Table 2: Comparison of mean integrated square error (MISE) between the estimated and actual densities,
where estimated densities were using bandwidth selection rules from normal reference Rule-of-Thumb (NR-
ROT), Gram-Charlier A series based extended ROT (GCAExROT), Silverman’s ROT (SROT), GCAk4ExROT
and ε-exact approximation algorithm based solve-the-equation plug-in (εSTEPI) bandwidth selectors. The un-
known test densities were from the set of normal mixture densities by Marron and Wand (Marron and Wand
1992). There were used 50000 samples. The table entries show the mean of 100 trials. The boldface values
denote the least MISE per row for a corresponding density. The boldface italic values denote the best among
ROT and ExROT class of bandwidth selection rules.

Bandwidth (h)*10 MISE*106

PDF GCAk4 GCA GCAk4
SROT ExROT NRROT ExROT SROT ExROT εSTEPI

Gaussian 0.709 1.214 1.403 1.404 1.450 1.722 1.406
Skewed Unimodal 0.525 0.819 1.801 1.729 1.727 1.996 1.730
Strongly Skewed 0.622 0.200 36.988 26.100 31.751 16.854 4.038

Kurtotic Unimodal 0.517 0.203 30.331 22.731 24.327 11.258 3.740
Outlier 0.112 0.129 19.221 4.435 14.296 4.495 4.421

Bimodal 0.939 0.970 2.024 2.268 1.728 1.584 1.588
Separated Bimodal 1.350 0.924 3.676 4.140 2.794 2.030 1.649

Skewed Bimodal 0.816 0.737 3.093 3.271 2.481 1.925 1.897
Trimodal 1.013 0.788 3.453 3.931 2.722 2.012 1.796

Claw 0.614 0.243 23.759 23.637 19.239 10.888 3.515
Double Claw 0.936 0.900 7.798 7.910 7.627 7.393 7.363

Asymmetric Claw 0.810 0.322 16.639 16.683 14.913 11.559 5.282
Asym. Double Claw 0.931 0.462 11.183 11.681 10.169 8.493 5.806

Smooth Comb 1.338 0.280 32.276 33.219 29.591 25.967 8.822
Discrete Comb 1.367 0.230 32.408 33.856 29.973 27.264 4.637

denote Gaussian distribution, β < 2 denote super-Gaussian distribution and β > 2 denote
sub-Gaussian distribution. Figure 3 (a) shows the super-Gaussian densities, i.e., GGD(β)
with β ≤ 2 and Figure 3 (b) shows the sub-Gaussian densities, i.e., GGD(β) with β ≥ 2.
The figure also shows corresponding kurtosis values obtained as an empirical mean of 100
simulation trials. Simulation results with the sample size of 50000 (large) have been reported
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Figure 3: The set of Probability density functions (PDFs) having Generalized Gaussian Distribution (GGD)
with varying values of β to have performance comparison of various bandwidth selection rules for Kernel
Density Estimation (KDE).

in in Table 3. It shows the kurtosis calculated as a mean of all 100 simulation trails for
the given density, the mean of the estimated bandwidth parameter (h) and the MISE by
NRROT, GCAExROT, SROT, GCAk4ExROT and εSTEPI bandwidth selection algorithms.
The boldface values denote the least MISE and in turn the best bandwidth estimator for that
particular type of density. The boldface italic values denote a better between NRROT and
GCAExROT in their mutual comparison.
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Table 3: Performance comparison of normal reference Rule-of-Thumb (NRROT), Gram-Charlier A series
based extended ROT (GCAExROT) and ε-exact approximation algorithm based solve-the-equation plug-in
(εSTEPI) bandwidth selectors for one dimensional Kernel Density Estimation (KDE) against densities following
Generalized Gaussian Distribution (GGD) with specific β values from the set { 1, 1.2, 1.5, 2, 5, 8, 10 }.
Estimated bandwidth, mean of the integrated square error (MISE) between the estimated and the actual
densities and time to estimate the bandwidth were used as the parameters for comparison. There were used
50000 (large) samples. The table entries show the mean of 100 trials. The boldface values denote the least
MISE per row for a corresponding density. The boldface italic values denote better between NRROT and
GCAExROT.

Bandwidth (h)*10−4 MISE*105

PDF Kurt NR GCA SROT GCA εSTE NR GCA SROT GCA εSTE
GGD osis ROT Ex k4Ex PI ROT Ex k4Ex PI
(β) ROT ROT PI ROT ROT PI

1 2.98 5.863 4.035 4.982 2.772 2.748 6.883 6.805 6.843 6.772 6.772
1.2 1.74 11.004 8.578 9.350 5.594 6.880 5.208 5.169 5.179 5.146 5.150
1.5 0.76 3.565 3.442 3.029 2.036 3.389 4.278 4.282 4.294 4.318 4.284
2 0 4.831 5.185 4.105 2.981 4.909 6.314 6.308 6.326 6.340 6.313
5 -0.93 1.843 2.008 1.566 1.200 1.244 8.528 8.515 8.548 8.571 8.568
8 -1.08 2.346 2.553 1.993 1.533 1.430 8.794 8.779 8.816 8.842 8.846
10 -1.12 3.580 2.939 3.042 1.872 2.454 3.949 3.929 3.931 3.929 3.923

The table shows that compare to NRROT, GCAExROT gave less MISE for all GGD(β) set of
densities, except the Gaussian, at large sample size of 50000. This reconfirms empirically that
the near-Gaussian assumption worked better than the Gaussian assumption for an unknown
unimodal density. In turn, this reconfirms the scaling provided by GCAExROT over NRROT,
based on kurtosis. Comparing the results from all the bandwidth estimators, for Gaussian
density NRROT, for super-Gaussian unimodal densities GCAk4ExROT and for sub-Gaussian
unimodal densities GCAExROT were the best. This implies that GCAk4ExROT improved
over GCAExROT for super-Gaussian but degraded for Gaussian and sub-Gaussian. Though
GCAExROT was the best, NRROT was better than all remaining – SROT, GCAk4ExROT
and εSTEPI – bandwidth estimators for sub-Gaussian densities.

Overall, GCAk4ExROT improved over GCAExROT for super-Gaussian and multimodal den-
sities but at the cost of some loss of performance for Gaussian and sub-Gaussian densities.
Though the latter part is theoretically important to understand the new rule in its entirety,
empirically it may not be of much significance as its performance on the set of normal mix-
ture densities developed as a test-bed by Marron and Wand (Marron and Wand 1992) and
accepted by the researchers in the field has been satisfactorily improving over GCAExROT.
Also, it is a fact that both εSTEPI and SROT also gave poor performances than NRROT for
these Gaussian and sub-Gaussian densities. Accordingly, the next section fully explores the
potential of GCAExROT and GCAk4ExROT both for their performances.

6. Performance analysis of ExROT bandwidth selectors

Once verified for their performances at steady state with 50000 samples, the detailed per-
formance analysis and empirical usefulness of the derived GCAExROT and GCAk4ExROT
have been targeted in this section. They are compared for their performances with NRROT,
SROT and εSTEPI against varying number of samples, against varying distributions at small
sample sets and against real data sets.

6.1. Performance against varying number of samples

The first experiment was done to compare performances of the same bandwidth estimators
against KDE of varying number of samples. The number of samples were varied from 50 to
50000. Figure 4 shows the MISE plotted against the log of number of samples for all 15 nor-
mal mixture densities using the bandwidth estimators NRROT (Dotted Lines), GCAExROT
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Figure 4: The plots of mean integrated square error (MISE) against varying number of samples (from
50 to 2000) using NRROT (Dotted Lines), SROT (Thick Dotted Lines), GCAExROT (Dashed Lines),
GCAk4ExROT (Thick Dashed Lines) and εSTEPI (Solid Lines) bandwidth estimators in Gaussian kernel
based estimation of normal mixture density functions in Figure 1. The number of simulation trials for each
sample size were 100.

(Dashed Lines), GCAk4ExROT (Thick Dashed Lines) and εSTEPI (Solid Lines). To achieve
visibility, the plots are shown till 2000 samples only. This is also justified as there is almost
same linear rate of reduction of MISE with respect to increasing number of samples and there
is no much more difference in MISE at large samples for KDE using the given bandwidth
estimators. Similar to the results reported at 50000 samples, Figure 4 shows the superiority
of NRROT for Gaussian, SROT for skewed Gaussian and εSTEPI for strongly skewed and
kurtotic unimodal densities for any number of samples in terms of achieving minimum mean
of the MISE. But un-compare to the results reported at 50000 samples, it shows that at small
samples GCAk4ExROT has been the best giving minimum mean of the MISE for outlier den-
sity among the unimodal densities and bimodal, skewed bimodal, trimodal, claw, double claw,
asymmetrical claw and asymmetrical double claw density types among multimodal densities.
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For these densities, at small samples GCAk4ExROT and at large samples εSTEPI gave the
minimum MISE with the transition for the least MISE happening at a few hundreds to a few
thousands of samples depending upon the density type. Overall, GCAk4ExROT has been
better than both NRROT and SROT for KDE of all except, Gaussian and slightly skewed
unimodal (almost Gaussian) density types at any number of samples. It has also been better
than εSTEPI, for KDE of some of the multimodal density types at reduced sample sizes.
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Figure 5: The loglog plot of the Mean Speed-up achieved by GCAk4ExROT over εSTEPI against increasing
number of samples in bandwidth estimation for KDE of a normal mixture density by Marron and Wand
(Marron and Wand 1992). There were used Gaussian kernel, Kurtotic unimodal density and 100 simulation
trial for each sample set.

Such a performance of GCAk4ExROT is with reduced time complexity compare to that of
εSTEPI. To understand the gain in computational time, the log of the mean Speed-ups with
respect to the log of number of samples have been plotted in Figure 5. The plot has a slope
slightly less than one. This implies that with increasing number of samples the Speed-up also
increases almost linearly. Overall, the results of this experiment with varying number of sam-
ples justify the claim that GCAExROT and GCAk4ExROT provide performance balancing
both accuracy and computation, i.e., accuracy better than the ROT and computational cost
better than the STEPI bandwidth selectors.

6.2. Performance against varying distributions at small sample set

As reported before, the performance of various bandwidth estimators do not vary much at
steady state, i.e., large number of samples. Also, nowadays small sample performances of
the bandwidth estimators are of much more interest. So, here the bandwidth estimators
performances over 100 samples and 50 samples have been reported. There were considered
100 simulation trials for each density estimation from the set of normal mixture densities,
those shown in Figure 1.

Table 4 reports the results for the bandwidth estimated, mean of the MISE and mean speed-
up achieved by GCAExROT over εSTEPI – all against varying distributions at 100 samples.
Results at 50 samples have been reported using box-plots of estimated MISE due to the
bandwidth estimators in the test and are shown in Figure 6. The labels on the x-axis are
sequentially NRROT, GCAExROT, SROT, GCAk4ExROT and εSTEPI. The mean of MISE
reported in Table 4 and the median of MISE in Figure 6, confirm the previous observations of
GCAk4ExROT being better compare to both NRROT and SROT for KDE of distributions
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other than Gaussian and (slightly) skewed Gaussian, as well, the same algorithm being better
than εSTEPI for KDE of outlier unimodal density and many other multimodal densities at
small samples. It should also be noted that overall εSTEPI is the best giving minimum mean
and median of MISE for many of the densities but it also has large estimation variances
compare to all other bandwidth estimator as can be visualized in the box-plots in Figure 6.
The MISE was in the range of 10−2 for 50 samples and varying from 10−2 to 10−3 for 100
samples. The mean speed up achieved by GCAExROT over εSTEPI was also increased from
few tens at 50 samples to almost hundred at 100 samples.

Table 4: Comparison of mean integrated square error (MISE) between the estimated and actual densities,
where estimated densities were using bandwidth selection rules from normal reference Rule-of-Thumb (NR-
ROT), Gram-Charlier A series based extended ROT (GCAExROT), Silverman’s ROT (SROT), GCAk4ExROT
and ε-exact approximation algorithm based solve-the-equation plug-in (εSTEPI) bandwidth selectors. The un-
known test densities were from the set of normal mixture densities by Marron and Wand (Marron and Wand
1992). There were used 100 samples. The table entries show the mean of 100 trials. The boldface values
denote the least MISE per row for a corresponding density. The boldface italic values denote the least MISE
among ROT and ExROT class of bandwidth estimators.

Bandwidth (h)*10 MISE*102 Mean
P NR GCA S GCA εSTE NR GCA S GCA εSTE Speed
D ROT Ex ROT k4Ex PI ROT Ex ROT k4Ex PI -up
F ROT ROT ROT ROT ∗10−1

a 4.172 4.147 3.545 2.440 4.063 0.646 0.653 0.682 0.849 0.681 4.835
b 3.390 2.896 2.880 1.841 2.872 0.837 0.848 0.833 1.029 0.876 5.238
c 4.371 3.174 3.714 2.196 1.657 4.009 3.523 3.764 2.980 2.606 7.348
d 3.391 2.854 2.882 1.800 1.227 4.076 3.793 3.818 2.961 2.279 8.759
e 1.407 0.536 1.195 0.428 0.520 6.070 2.401 5.165 2.325 2.350 9.892
f 5.084 5.508 4.320 3.277 3.963 0.830 0.882 0.755 0.737 0.777 5.572
g 6.887 7.348 5.852 4.657 3.535 1.405 1.502 1.174 0.924 0.826 6.255
h 4.572 4.722 3.885 2.807 3.445 1.009 1.029 0.933 0.883 0.919 5.697
i 5.387 5.832 4.577 3.524 3.983 0.956 1.012 0.865 0.794 0.844 5.686
j 3.662 3.655 3.112 2.157 3.326 2.244 2.244 2.222 2.160 2.236 5.098
k 5.094 5.516 4.329 3.286 3.807 0.948 0.991 0.891 0.890 0.911 5.620
l 4.766 4.758 4.049 2.853 4.313 1.620 1.621 1.586 1.489 1.603 4.982

m 5.040 5.428 4.283 3.235 3.910 1.127 1.170 1.057 1.013 1.050 5.249
n 6.981 7.360 5.931 4.671 2.685 2.942 2.997 2.762 2.499 1.980 6.575
o 7.067 7.632 6.004 4.696 2.227 3.350 3.402 3.195 2.846 1.817 6.627

6.3. Performance against real datasets

The bandwidth estimators were also tested on three different real datasets. The Adult
database from the UCI machine learning repository (Lichman 2013) contains 32561 instances
with 14 attributes per instance. Among them, five continuous attributes – age, final weight
(fnlwgt), capital gain (cap-gain), capital loss (cap-loss) and hours per week (hrs/wk) – were
used for bandwidth and the resultant density estimations. The second dataset used was an
‘Old faithful’ geyser database from R manual, originally from (Azzalini and Bowman 1990).
The database contains 272 instances of durations of eruptions and waiting between two con-
secutive eruptions for the ‘Old faithful’ geyser in Yellowstone National Park, Wyoming, USA.
There are many other versions of the same ‘Old faithful’ geyser data and that used by Silver-
man (Silverman 1986) with 107 observations has also been used here for testing.

As the true densities are not known, the estimators are compared based on the estimated
bandwidth values and the visual observation of the estimated densities. Table 5 shows mu-
tual comparision of the bandwidths estimated by the bandwidth estimators in test, as well,
the Speed-up achieved by GCAk4ExROT over εSTEPI. The table entries exhibit that the es-
timated bandwidths by GCAExROT are smaller than those by NRROT but larger than those
by εSTEPI. Similarly, the bandwidths by GCAk4ExROT are larger than those by εSTEPI
and smaller than those by rest all, including SROT. Among all the estimated bandwidth
values, the bandwidth selected by GCAk4ExROT is the nearest to the visually selected best
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Figure 6: The boxplots of mean integrated square error (MISE) using NRROT, GCAExROT, SROT,
GCAk4ExROT and εSTEPI bandwidth estimators for the KDE of normal mixture densities in Figure 1 using
sample size of 50 and 100 simulation trials.

Table 5: Performance comparison of various bandwidth selectors for Kernel Density Estimation (KDE) on
real data sets. The time calculation is on a machine with features: Intel 2.5 GHz core i5, 4 GB 1.6 GHz DDR3,
OS X EI Capitan (version 10.11.6), MATLAB R2010a.

Bandwidth (h)
pdf NR GCA GCAk4 εSTEPI Speed

ROT ExROT SROT ExROT -Up

Adult database from UCI machine learning repository with 32561 instances

age 1.808 1.735 1.536 1.059 0.861 72.4
fnlwgt 13992.54 7516.28 11889.432 5631.151 4099.564 5630.7

cap-gain 979.053 157.515 831.899 132.839 2.377 159869.8
cap-loss 53.420 18.607 45.391 15.086 0.123 110507.4
hrs/wk 1.637 1.130 1.391 0.776 0.010 52289.1

‘Old faithful’ geyser dataset from R manual with 272 observations

Eruptions 0.394 0.399 0.335 0.267 0.140 26.4
Waitings 4.693 4.851 3.988 3.047 2.497 4.8

‘Old faithful’ geyser dataset from (Silverman 1986) with 107 observations

eruptions 0.433 0.427 0.368 0.277 0.181 131.1
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Figure 7: KDE using Gaussian kernel and bandwidths from SROT (Dotted Line), GCAk4ExROT (Dashed
Line) and εSTEPI (Solid Line) for density estimate of two variables (a) age and (b) final weight (fnlwgt) in
Adult database from UCI machine learning repository with 32561 instances.
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Figure 8: KDE using Gaussian kernel and bandwidths from SROT (Dotted Line), GCAk4ExROT (Dashed
Line) and εSTEPI (Solid Line) for (a) eruptions and (b) waiting in ‘Old Faithful’ geyser database with 272
instances from R manual and originally from (Azzalini and Bowman 1990). Similarly, plot (c) is for eruptions
in ‘Old Faithful’ geyser database with 107 observations from (Silverman 1986).

value of h = 0.25 by Silverman (Silverman 1986) for the ‘Old faithful’ geyser dataset with
107 observations. Interested users can verify estimated bandwidth values from many other
bandwidth estimators for the same database in (Loader 1999, Section 4). The estimated den-
sities through bandwidths from SROT, GCAk4ExROT and εSTEPI for some of the variables
from Adult database are plotted in Figure 7 and those from ‘Old faithful’ geyser database
are plotted in Figure 8. It can be observed that the densities estimated using εSTEPI as
the bandwidth selection rule are quite noisy (’wiggly’), those estimated using NRROT as
the bandwidth selection rule are too smooth and compare to them, the densities estimated
through GCAk4ExROT are intermediate, i.e., quite smooth and at the same time without
losing any major bumps.

7. Conclusion and discussion

Towards bandwidth selection rules for one dimensional KDE, NRROT is the most popular
and widely used. It is simple being ‘quick and dirty ’ and assumes the unknown density to be
estimated as Gaussian. The current article extends this assumption to near-Gaussianity and
derives GCA series based ExROT, identified as GCAExROT, in Equation (20). The exper-



158 GCA series Based ExROT for Univariate KDE

imental verification of the derived GCAExROT exhibited better performance over NRROT
for unimodal densities but poor performance at multimodal distributions. The analysis found
that the estimation of the cumulants over multiple modes causes overestimated variance and
underestimated kurtosis locally for a given mode. Based on the historical evidence of NR-
ROT performance improvement by Silverman deriving SROT, GCAExROT performance has
also been improved deriving GCAk4ExROT in (23) by adapting suitable correction mecha-
nisms. Theoretically the extended assumption and empirically the testing on simulated and
real datasets proved GCAExROT and the modified rule GCAk4ExROT as ‘quick and not so
dirty ’ bandwidth estimators.

Both the bandwidth selectors derived in this article are simple, quick and with rate of con-
vergence of estimation error against number of samples similar to those of NRROT and
SROT. GCAExROT gave better accuracy than both NRROT and SROT for KDE of uni-
modal densities, accept Gaussian, but gave poor accuracy for KDE of multimodal densities.
GCAk4ExROT gave better accuracy than both NRROT and SROT for KDE of all, except
Gaussian and slightly skewed unimodal, at any given number of samples. At large samples,
GCAk4ExROT achieves substantial speed-up compare to the εSTEPI, and at small samples
it achieves accuracy comparable to that of εSTEPI for some of the multimodal distribu-
tion. As such, εSTEPI gave the smallest bandwidth parameters, resulting into the smallest
estimation bias but gave relatively large estimation variance and noisy (’wiggly’) density esti-
mates. Compare to it, GCAk4ExROT gave small estimation variance and less noisy (‘wiggly’)
or more smoother density estimates, but more estimation bias compare to εSTEPI. Thus,
GCAk4ExROT has performance intermediate to those of ROT class and STEPI class band-
width estimators balancing accuracy and computational cost. So, the article recommands
GCAk4ExROT as a replacement for NRROT and SROT. With computations no-longer re-
maining a major problem nowadays, εSTEPI may not required to be replaced whenever a
precision in estimation is required and sufficient number of samples are available. Still one
may select GCAk4ExROT over εSTEPI in case of small samples with slight loss of accuracy
against the gain in computational time, the smoothness in estimation and the reduction in
estimation variance. GCAExROT has an performance intermediate to those of ROT class
and STEPI class bandwidth estimators for unimodal densities. In case, a prior is available
that the density to be estimated is unimodal, GCAExROT instead of GCAk4ExROT can be
used to replace NRROT.

The improvement needed for GCAExROT may raise a query whether we can consider the
concept of applying extended assumption of near-Gaussianity for an unknown density a suc-
cess or not. It is to be reminded that GCAExROT gave better accuracy for GGD(β) class
of unimodal symmetrical densities with varying kurtosis. It has also shown success against
skewed and other unimodal normal mixture densities. This implies that the extended assump-
tion worked very well for KDE of the unimodal densities, which fit better the near-Gaussian
assumption. But it is known that the real world densities may not be unimodal and thus
may not exactly fit the near-Gaussianity assumption. The modifications needed was to make
the near-Gaussian assumption valid in most of the real scenario and that is what it achieved.
Thus, the extended assumption is really a success in bringing a class of rules balancing accu-
racy and computational cost.

The results specifically on real datasets raise a query: why the εSTEPI rule, following a
more complex mechanism to estimate bandwidth, has resulted into such noisy estimates?
The answer from (Loader 1999) is that the bandwidth estimators estimate optimal h that
minimizes the AMISE and it is not optimized to achieve the smoothness. AMISE itself is
inadequate to address the smoothness concern simultaneously. In spite of this justification,
visual observation of smoothness can not be denounced.

The topic of data driven bandwidth estimator for KDE is well established. Till now, the re-
search had been following two major trends. The first trend intends to give simple, ‘quick and
dirty ’ estimate of an unknown density. The intention is achieved by enforcing an assumption
of a specific density on the unknown density to be estimated. The second trend intends to
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achieve more accurate estimate of an unknown density. The methods following this trend
employ an iterative technique to solve a nonlinear equation relating density functionals and
bandwidth, and improve the bandwidth parameter estimate iteratively. The methods apply
assumption of a specific density on the unknown density to be estimated only during a pilot
stage. As a whole, they become computationally expensive. The significance of this article
can be derived from the fact that it successfully initiates a third trend. The third trend that
balances both the previous trends in terms of the approach or the basic assumptions, which
in turn also translates into balancing the accuracy and the computations. Instead of either
an assumption of a specific density or effectively no such assumption through the multi-stage
estimation approach, it assumes the unknown density to be estimated as the member of a
generalized group of densities such that it can be expressed as an infinite series expansion
through statistics of a known reference density. As these rules not just depend upon the scale
parameter but also on the higher order cumulants of an unknown density, the class of these
rules can also be identified as the ‘Cumulant Measures’. With the better results due to wider
assumptions and time taken almost of the same order, the rules through the third approach,
the ’quick and not so dirty ’ rules, can replace the ‘quick and dirty ’ rules.

By successfully deriving GCAExROT and modifications, this article also serves as a particular
demonstration of a new class of bandwidth selection rules based on PDF approximations
through infinite series. The PDF approximation through infinite series expansion is a well
established area and there exist many such approximations based on various reference PDFs.
To give some examples, there are Gram-Charlier series expansions based on the Poisson
distribution (Aroian 1937), log-normal distribution (Aroian 1947; Schleher 1977), binomial
distribution (Rietz 1927), gamma distribution (Bowers 1966), Wishart distribution (Kollo
and von Rosen 1995) and others as reference PDFs. As the results achieved in this article
are encouraging, many such rules can be developed and evaluated. ExROT based on pdf
approximation through infinite series expansion other than GCA series, as well, multivariate
generalization of the derived GCAExROT for multivariate KDE are the possible future work.

Appendix

AMISE for bandwidth parameter selection in KDE

Given N realizations of an unknown PDF f(x), the kernel density estimate f̂(x) is given by

f̂(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
=

1

N

N∑
i=1

Kh (x− xi). (24)

where, K(u) is the kernel function and h is the bandwidth parameter. Usually, K(u) is a
symmetric, positive definite and bounded function; mostly a PDF; satisfying the following
properties:

K(u) ≥ 0,

∫
Rd

K(u)du = 1,

∫
Rd

uK(u)Du = 0,

∫
Rd

u2K(u)du = µ2(K) <∞.

The accuracy of a PDF estimation can be quantified by the available distance measures be-
tween PDFs, like L1 norm or mean integrated absolute measure, L2 norm or mean integrated
square error (MISE), Kullback-Leibler divergence and others. The optimal smoothing pa-
rameter (the bandwidth) h is obtained by minimizing the selected distance measure. The
bandwidth selection rule based on the most widely used criteria MISE or ISE (Integrated
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Square Error) is derived as under (Silverman 1986; Wand and Jones 1994).

ISE(f(x), f̂(x)) = L2(f(x), f̂(x)) :=

∫
Rd

(f̂(x)− f(x))2dx.

MISE(f(x), f̂(x)) = E{ISE(f(x), f̂(x))} = E

{∫
Rd

(f̂(x)− f(x))2dx

}
=

∫
Rd

E{(f̂(x)− f(x))2}dx =

∫
Rd

MSE(f(x), f̂(x)) = ISE(f(x), f̂(x))

=

∫
Rd

(E{f̂(x)} − f(x))2 + E{(f̂(x)− E{f̂(x)})2}dx

=

∫
Rd

Bias2(f̂(x))dx+

∫
Rd

Var(f̂(x))dx. (25)

Now, E{f̂(x)} =
1

Nh

N∑
i=1

E

{
K

(
x− xi
h

)}
=

1

h

∫
Rd

K

(
x− s
h

)
f(s)ds

=

∫
Rd

K(z)f(x− hz)dz ( ∵ substituting z = x−s
h ) .

Expanding f(x− hz) using Taylor Series with the assumption of f(x) being a smooth PDF,
i.e., all derivatives exist, we get:

E{f̂(x)} =

∫
Rd

K(z)

(
f(x)− hzf ′(x) +

h2z2

2
f ′′(x) +O(h2)

)
dz

= f(x) +
h2

2
µ2(K)f ′′(x) +O(h2).

⇒ Bias(f̂(x)) ≈ h2

2
µ2(K)f ′′(x), (26)

where µ2(K) =
∫
z2K2(z)dz, the second order central moment of the kernel.

Similarly, Var(f̂(x)) = Var

(
1

Nh

N∑
i=1

K

(
x− xi
h

))

=
1

N2h2

N∑
i=1

Var

(
K

(
x− xi
h

))
=

1

Nh2

[
E

{
K2

(
x− xi
h

)}
− E2

{
K

(
x− xi
h

)}]
=

1

N

∫
Rd

1

h2

(
K2

(
x− s
h

))
f(s)ds− 1

N

(
1

h

∫
Rd

K

(
x− s
h

)
f(s)ds

)2

=
1

Nh

∫
Rd

K2(z)f(x− hz)dz − 1

N

(
f(x) + Bias(f̂(x))

)2
. (27)

where, s is the mean of x and z = x−s
h . Now, expanding f(x − hz) using Taylor Series with

assumption of f(x) being a smooth PDF i.e. all derivatives exist

Var(f̂(x)) =
1

Nh

∫
Rd

K2(z)

(
f(x)− hzf ′(x) +

h2z2

2
f ′′(x) +O(h2)

)
dz

− 1

N

(
f(x) +

h2z2

2
f ′′(x) +O(h2)

)2

⇒ Var(f̂(x)) ≈ 1

Nh
f(x)

∫
K2(z)dz (∵ assuming large N , small h ) . (28)
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Combining equations (25), (26) and (28)

MISE(f̂(x)) =
h4

4
(µ2(K))2R(f ′′) +

1

Nh
R(K) +O(h4) +O

(
h

N

)
,

where R(f ′′) =
∫

(f ′′(x))2dx and R(K) =
∫
K2(z)dz. In general, R(g) =

∫
g2(z)dz is identi-

fied as the roughness of function g(x). An asymptotic large sample approximation AMISE is
obtained, assuming limN→∞ h = 0 and limN→∞Nh =∞ i.e. h reduces to 0 at a rate slower
than 1/N .

AMISE(f̂(x)) =
h4

4
(µ2(K))2R(f ′′) +

1

Nh
R(K). (29)

The Equation (29) interprets that a small h increases estimation variance, whereas, a larger
h increases estimation bias. An optimal h minimizes the total AMISE(f̂(x)). So,

d

dh
AMISE(f̂(x)) = h3(µ2(K))2R(f ′′)− 1

Nh2
R(K) = 0

⇒ hAMISE =

(
R(k)

µ2(K)2R(f ′′)N

) 1
5

. (30)

Thus, the optimal bandwidth parameter depends upon some of the kernel parameters, number
of samples and the second derivative of the actual PDF being estimated.
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