Assessing Performance of the Generalized Exponential Model in the Presence of the Interval Censored Data with Covariate
DOI:
https://doi.org/10.17713/ajs.v51i1.1192Abstract
This study aims to extend the generalized exponential model (GEM) to include covariates in the presence of interval-censored data. The maximum likelihood estimator (MLE) was obtained for the parameter of the model formulated. Afterward, a thorough simulation study was carried out to evaluate the estimator's performance based on the values of bias, standard error (SE), and root mean square error (RMSE). The result indicated that the (SE) and (RMSE) decrease with the increase in sample sizes and decrease in censoring proportions. Finally, the performance of the Wald confidence interval estimation technique for the GE model with interval-censored data covariate was assessed by a coverage probability study at several censoring proportions and different sample sizes.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Nada Alharbi, Jayanthi A., Haizum A., Wendy Ling
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.