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Abstract

In this paper, we try to contribute to the distribution theory literature by incorporat-
ing a new bounded distribution, called the unit generalized inverse Weibull distribution
(UGIWD) in the (0, 1) intervals by transformation method. The proposed distribution
exhibits increasing and bathtub shaped hazard rate function. We derive some basic statis-
tical properties of the new distribution. Based on complete sample, the model parameters
are obtained by the methods of maximum likelihood, least square, weighted least square,
percentile, maximum product of spacing and Cramèr-von-Mises and compared them using
Monte Carlo simulation study. In addition, bootstrap confidence intervals of the param-
eters of the model based on aforementioned methods of estimation are also obtained. We
illustrate the performance of the proposed distribution by means of one real data set and
the data set shows that the new distribution is more appropriate as compared to unit
Birnbaum-Saunders, unit gamma, unit Weibull, Kumaraswamy and unit Burr III distri-
butions. Further, we construct chi-squared goodness-of-fit tests for the UGIWD using
right censored data based on Nikulin-Rao-Robson (NRR) statistic and its modification.
The criterion test used is the modified chi-squared statistic Y 2, developed by Bagdon-
avičius and Nikulin (2011) for some parametric models when data are censored. The
performances of the proposed test are shown by an intensive simulation study and an
application to real data set

Keywords: chi-squared test, Cramèr-von-Mises estimators, maximum likelihood estimators,
maximum product of spacing estimators, right censored data.

1. Introduction

An integral part of many statistical studies is the collection of information about the form of
population from which the data is obtained. For this purpose, statisticians often use goodness
of fit (GOF) tests so as to determine whether the observed sample data “fits” some proposed
model. To validate the model, tests such as graphical tests, chi-squared tests, Kolmogorov-
Smirnov statistic, Anderson-Darling statistic and many others are employed. The objective of
these tests is to measure the distance between the observed values and the expected theoretical
values. The chosen (or selected) model will be rejected when this distance is found to be
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greater than the critical value. The standard tables for these tests are considered to be
invalid when the parameters are unknown. Further, goodness of fit tests for complete sample
procedures are inappropriate in case of censored samples (see Badr (2019)).

We find many useful studies on GOF in statistical literature, especially, when the model is
well specified. Readers may refer to the works of: Stephens (1970), Stephens (1974), Durbin
(1975), Green and Hegazy (1976), Chandra, Singpurwalla, and Stephens (1981), Murthy, Xie,
and Jiang (2004), Abdelfattah (2008), Yen and Moore (1988), Balakrishnan and Basu (1995),
Hassan (2005), Abd-Elfattah (2011), Wang (2008), Al-Omari and Zamanzade (2016), Aidi
and Seddik-Ameur (2016), Zamanzade and Mohdizadeh (2017), Goual and Yousof (2020) and
many others. It is to be noted that when we consider censored data and the parameters of
the model are unknown as in case of reliability and medical studies, the research problem
remains open as much needs to be investigated as regards to adequacy of newly introduced
distributions.

Of late, several studies have been carried out to define new families of inverse Weibull dis-
tribution, such as De Gusmao, Ortega, and Cordeiro (2011) proposed the generalized inverse
Weibull distribution, Khan and King (2012) proposed modified inverse Weibull distribution,
Hanook, Shahbaz, Mohsin, and Kibria (2013) introduced beta inverse Weibull distribution,
Pararai, Warahena, and Oluyede (2014) proposed gamma inverse Weibull distribution, Aryal
and Elbatal (2015) introduced Kumaraswamy modified inverse Weibull distribution, Elbatal,
Condino, and Domma (2016) proposed reflected generalized beta inverse Weibull distribution,
Okasha, El-Baz, Tarabia, and Basheer (2017) introduced Marshall-Olkin extended inverse
Weibull distribution, Mudasir and Ahmad (2018) introduced weighted version of general-
ized inverse Weibull distribution and Basheer (2019) introduced alpha power inverse Weibull
distribution and the reference cited therein.

The above cited distributions are extended form of inverse Weibull distribution and have been
derived by incorporating some additional parameters to the original probability distribution.
In addition, they are based on the support over positive part of the real line. At the same
time, probability distributions with support on finite range play a key role in many studies.
For instance, many life test experiments which cater to data on some finite range, such as
data on fractions, percentages, per capita income growth, fuel efficiency of vehicles, height and
weight of individuals, survival times from a deadly disease etc. are likely to lie in some bounded
positive intervals (see Kumaraswamy (1980), Gomez-Deniz, Sordo, and Caldern-Ojeda (2013),
Mazucheli, Menezes, and Ghitany (2018a), Mazucheli, Menezes, and Dey (2018b), Mazucheli,
Menezes, and Dey (2018c), Mazucheli, Menezes, and Dey (2019)). Due to evolving problems in
life testing experiments, statistician require more and more distributions with finite support.

In this paper, first we derive a new bounded distribution from the generalized inverse Weibull
distribution by transformation of the type x = T

1+T , where T has the generalized inverse
Weibull distribution. We obtain a new distribution with support on (0, 1), which we refer
to as unit generalized inverse Weibull distribution (UGIWD). This distribution is capable
of modelling increasing and bathtub shaped hazard rate. Second, we obtain maximum like-
lihood, least square, weighted least square, percentile, maximum product of spacing and
Cramèr-von-Mises estimators for the unknown parameters of the model based on complete
sample. Besides, bootstrap confidence intervals (BCIs) of the parameters of the model based
on above cited methods of estimation are also obtained. Next, we construct chi-squared tests
for the UGIWD when data are right censored. We use modified chi-squared statistic devel-
oped by Bagdonavičius, Levuliene, and Nikulin (2013) for some parametric accelerated failure
times models. This technique has been used to validate some models like, Weibull extension
accelerated failure time model (Seddik-Ameur and Wafa 2018), competing risk model (Chouia
and Seddik-Ameur 2017).

The organization of this article is as follows: In Section 2, model description is provided. In
Section 3, some basic properties of the model are derived. In Section 4, six different classical
methods of estimation based on complete samples are discussed. Monte Carlo simulation
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study is carried out to compare the different methods of estimation in Section 5. The poten-
tiality of the new model is illustrated by means of an application to real data set in Section
6. In Section 7, maximum likelihood estimates based on right censored data is discussed.
Estimated Fisher information matrix is obtained in Section 8. In Section 9, test statistic for
right censored data is proposed for the model. In order to study the performance of the test
statistic, a simulation study is carried out based on right censored samples in Section 10. In
order to confirm the practicability of the proposed goodness-of-fit test, and the usefulness of
this model, one real data set is analyzed in Section 11. At the end of this paper, conclusions
are given in Section 12.

2. Model description

If a random variable T follows generalized inverse Weibull (GIW) distribution, then X =
T

1+T follows a UGIWD. The cumulative distribution function of generalized inverse Weibull
(GIW) distribution is given by

F (t) = e−α(λ/t)
β

, t > 0 , α, β, λ > 0.

Thus the UGIWD with three parameters has the density function

f(x) =
αλβ

x2

(
λ(1− x)

x

)β−1
exp

{
−α

(
λ(1− x)

x

)β}
, 0 < x < 1 , α, β, λ > 0. (1)

The cumulative distribution function (CDF), survival function (SF) and hazard rate function
of UGIWD are, respectively given by

F (x) = exp

{
−α

(
λ(1− x)

x

)β}
, (2)

S(x) = 1− exp

{
−α

(
λ(1− x)

x

)β}
, (3)

h(x) =

αλβ
x2

(
λ(1−x)

x

)β−1
exp

{
−α

(
λ(1−x)

x

)β}
1− exp

{
−α

(
λ(1−x)

x

)β} . (4)

and the cumulative hazard rate function is given by

H(x) = − lnS(t) = − ln

(
1− exp

{
−α

(
λ(1− x)

x

)β})
. (5)

For some parameter values, Figures 1 indicate the probability density function, hazard func-

tion of the UGIW distribution.
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Figure 1: Probability density function and hazard function of the UGIW

3. Statistical and mathematical properties

In this section, we devoted to some statistical and mathematical properties of the UGIW
distribution.

3.1. Moments and moment generating function

The moments, incomplete moments, moment generating function, skewness and kurtosis of
a probability distribution are very important tools to illustrate the distribution. The nth
moments of the UGIW distribution is given by

E(Xn) =

∫ ∞
0

xnf(x)dx = αλβ

∫ 1

0
xn−2

(
λ(1− x)

x

)β−1
exp

[
−α

(
λ(1− x)

x

)β]
dx

= αλnβ

∫ ∞
0

(λ+ t)−ntβ−1 e−αt
β
dt,

where t =
(
λ(1−x)

x

)
. For |x| < λ and negative integer −n, the power series holds

(x+ λ)−n =

∞∑
i=0

(−1)i
(
n+ i− 1

i

)
xi λ−i−n.

Hence, we can write

E(Xn) = αλ−iβ

∞∑
i=0

(−1)i
(
n+ i− 1

i

)∫ ∞
0

tβ+i−1 e−αt
β
dt

=
∞∑
i=0

(−1)i
(
n+ i− 1

i

)
λ−i α

− i
β Γ

(
i

β
+ 1

)
. (6)

The moment generating function of the UGIW distribution can be computed as

Mx(t) =
∞∑
p=0

∞∑
i=0

(−1)i
(
p+ i− 1

i

)
tp λ−i α

− i
β

p!
Γ

(
i

β
+ 1

)
.
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In Table 1, we have presented the expected values, variances, skewness and kurtosis of the
UGIW distribution for various values of α and β. One can see from Table 1 that the the
means and variances are increasing with respect to α and β but covariance (CV), skewness
and kurtosis are decreasing with respect to α and β.

Table 1: Moment calculations for various values of α and β when λ = 1

α β Mean Variance CV Skewness Kurtosis

0.5 0.5 0.24381 0.28025 0.76775 1.52505 8.30275
1 0.41725 0.41185 0.54382 1.14310 5.43955
5 1.03315 0.63835 0.27341 0.74905 3.39335

10 1.35185 0.68225 0.21602 0.69142 3.17452
15 1.68401 0.70605 0.17641 0.66181 3.07025
35 2.02342 0.71845 0.14810 0.64682 3.01955

1.5 0.5 0.34713 0.39945 0.64375 1.21445 5.79085
1 0.55171 0.54950 0.47505 0.92840 4.09061
5 1.20785 0.77995 0.25850 0.62802 2.84415

10 1.53302 0.82181 0.20905 0.58331 2.70830
15 1.86855 0.84423 0.17385 0.56023 2.64335
35 2.20955 0.85585 0.14805 0.54851 2.61175

5 0.5 0.47515 0.52135 0.53725 0.98580 4.35995
1 0.71141 0.67335 0.40781 0.76565 3.31075
5 1.40605 0.88215 0.23615 0.53295 2.53915

10 1.73710 0.91775 0.19503 0.49805 2.45535
15 2.07583 0.93661 0.16485 0.48429 2.41541
35 2.41835 0.94630 0.14221 0.47081 2.39595

10 0.5 0.55005 0.57881 0.48904 0.89450 3.88942
1 0.80203 0.72430 0.37515 0.70195 3.06553
5 1.51485 0.91262 0.22295 0.49901 2.46351

10 1.84870 0.94365 0.18582 0.46862 2.39865
15 2.18875 0.95995 0.15825 0.45285 2.36785
35 2.53205 0.96835 0.13742 0.44485 2.35285

15 0.5 0.62272 0.62515 0.44890 0.82570 3.57405
1 0.88815 0.76061 0.34715 0.65605 2.91260
5 1.61610 0.92652 0.21055 0.47885 2.43381

10 1.95221 0.95295 0.17682 0.45241 2.38272
15 2.29343 0.96680 0.15163 0.43875 2.35851
35 2.63734 0.97385 0.13232 0.43175 2.34675

35 0.5 0.69151 0.66115 0.41575 0.77440 3.36180
1 0.96825 0.78495 0.32351 0.62435 2.82031
5 1.70842 0.92891 0.19945 0.46981 2.43223

10 2.04625 0.95120 0.16850 0.44695 2.39105
15 2.38840 0.96281 0.14525 0.43515 2.37155
35 2.73275 0.96873 0.12735 0.42915 2.36210

3.2. Quantiles, L-moments and measures of skewness and kurtosis

The characteristics of probability distribution are also measured by the quantile function like
the moments. Also, the quantile function represents the distribution and can be considered
as an alternative tool for data analysis, see Nair, Sankaran, and Balakrishnan (2013). Let
F (Qp;α, λ, β) be the CDF of the UGIW distribution at pth quantiles Qp. Then the pth
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quantile of the UGIW random variable is given by

xp =

{
1

λ

(
− ln p

α

)1/β

+ 1

}−1
. (7)

In particular, the first three quantiles, Q1, Q2 and Q3, can be obtained by setting p = 0.25,
p = 0.5 and p = 0.75 in equation (7), respectively.

An application of quantile function is the L-moments. L-moments are the linear combinations
of order statistics and can be used to compute the mean, standard deviation, skewness and
kurtosis of the distribution. The sth L-moment is defined by

Ls =

∫ 1

0

s−1∑
i=0

(−1)s−i−1
(
s− 1

i

)(
s− 1 + i

i

)
uiQ(u)du.

The coefficient of skewness and kurtosis based on quantiles are given by

(Galton cofficient) S =
Q0.25 +Q0.75 − 2Q0.5

Q0.75 −Q0.25

and

(Moors cofficient) T =
Q0.875 −Q0.625 +Q0.375 −Q0.125

Q0.75 −Q0.25
.

3.3. Conditional moment and mean deviation

Here, we introduce an important lemma which will be used in the next section.

Lemma 1. Let X be a random variable with pdf given in (1) and let Jn(t) =
∫ t
0 x

nf(x)dx.
Then we have

Jn(t) = λn
∞∑
i=0

(−1)i
(
n+ i− 1

i

)
α
− i
β
−1

γ

(
i

β
+ 1, β

(
λ(1− t)

t

)β)
, (8)

where γ(a, x) denote the incomplete gamma function and defined by γ(a, x) =
∫ x
0 t

a−1e−tdt.

Proof. Using equation (1), we have

Jn(t) =

∫ t

0
xnf(x)dx = αλβ

∫ t

0
xn−2

(
λ(1− x)

x

)β−1
exp

[
−α

(
λ(1− x)

x

)β]
dx

= αλnβ
∞∑
i=0

(−1)i
(
n+ i− 1

i

)∫ λ(1−t)
t

0
uβ+i−1 e−αu

β
du, (9)

where u =
(
λ(1−x)

x

)
. The result follows by using Equation (3.381.8) page 346 in Gradshteyn

and Ryzhik (2014) to calculate the integral in (9). The proof is complete.

The n−th conditional moments of the UGIW distribution is given by

ηn(t) = E[Xn|x > t] =
1

1− F (t)

∫ ∞
t

xnf(x)dx =
1

S(t)
[E(Xn)− Jn(t)].

It can be expressed by using (3), (6) and (8). The same remark holds for the n−th reversed
moments of the UGIW distribution and is given by

mn(t) = E[Xn|x ≤ t] =
1

F (t)

∫ t

0
xnf(x)dx =

1

F (t)
Jn(t).
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An application of the conditional moments is the mean residual life (MRL). MRL function is
the expected remaining life, X − x, given that the item has survived to time x. Thus, in life
testing situations, the expected additional lifetime given that a component has survived until
time x is called the (MRL). The MRL function in terms of the first conditional moment as

mX(x) = E(X − x|X > x) =
1

S(x)
J1(x)− x.

where J1(x) can be obtained from (9) when n = 1.

Another application of the conditional moments is the mean deviations about the mean and
the median. They are used to measure the dispersion and the spread in a population from
the center. If we denote the median by M , then the mean deviations from the mean and the
median can be calculated as

δµ =

∫ ∞
0
|x− µ| f(x)dx = 2µF (µ)− 2µ+ 2J1(µ)

and

δM =

∫ ∞
0
|x−M | f(x)dx = 2J1(M)− µ

respectively. Where J1(µ) and J1(M) can obtained from (8). Also, F (µ) and F (M) can be
easily calculated from (2).

3.4. Entropy and stress-strength reliability

Entropy is useful in gathering information about the uncertainty of the random experiment.
It was initially used in assessing the quality of communications. The Renyi Entropy which

generalizes the Hartley and Shannon entropies which is given by Rδ = 1
1−δ log

(∫ 1
0 f

δ(x)dx
)

,

δ 6= 1. The Renyi entropy in of the UGIW distribution is

Rδ =
δ

1− δ
log λ+

δ − 1

1− δ
log β +

δ

1− δ
log


2(δ+1)∑
i=0

(
2(δ + 1)

i

)
α
δ− i

β
−1

λδ−i−1

δ
i
β
+1

Γ

(
i

β
+ 1

) .(10)

The δ−entropy, say Iδ(x), is defined by

Iδ(x) =
1

δ − 1
log

[
1−

∫ 1

0
f δ(x)dx

]
, δ > 0, δ 6= 1,

and then it follows from equation (10).

The stress-strength reliability has been widely used in reliability analysis as the measure of
the system performance under stress. In terms of probability, the stress-strength reliability
can be obtained as

R = P (Y < X),

where X denotes strength of the system and Y denotes the stress applied on the system.
The probability R can be used to compare the two random variables encountered in vari-
ous applied disciplines. R for UGIW random variables (X ∼ UGIW (α1, λ1, β2) and Y ∼
UGIW (α2, λ2, β2)) is given by

R = β1

∞∑
i=0

∞∑
j=0

(−1)i+j
αi+1
1 αj2 λ

β1(i+1)
1 λβ2j2

i! j!
Be (2− β1(i+ 1)− β2j, β1(i+ 1) + β2j) ,

where B(a, b), is the complete beta function and is defined by B(a, b) =
∫ 1
0 x

a−1(1− x)b−1dx.
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3.5. Order statistics

Let X1, X2, . . . , Xn be a random sample from UGIW distribution. Let X1:n ≤ X2:n ≤ . . . ≤
Xn:n be the order statistics from this random sample, then the pdf fr:n(x) of the rth order
statistic, for r = 1, 2, . . . , n, is obtained as follows:

fr:n(x) =
n!

(r − 1)!(n− r)!
f(x)(F (x))r−1(1− F (x))n−r,

where f(x) and F(x) are the PDF and CDF of the UGIW distribution, respectively. The
PDF of rth order statistic is

fr:n(x) =
n!

(r − 1)!(n− r)!

n−r∑
i=0

(−1)i
(
n− r
i

)
f(x)(F (x))r+i−1

=
αβλ n!

(r − 1)!(n− r)!

n−r∑
i=0

(−1)i
(
n− r
i

)
1

x2

(
λ(1− x)

x

)β−1
exp

[
−α(r + i)

(
λ(1− x)

x

)β]
.

The kth moment of the rth order statistic is given by

E(Xk
r:n) =

n!

(r − 1)!(n− r)!

n−r∑
i=0

∞∑
j=0

(−1)i+j
(
n− r
i

)(
k + j − 1

j

)
λ−i α

− i
β

Γ
(
i
β + 1

)
(r + i)

i
β
+1
.

4. Different methods of parameter estimation based on complete sample

4.1. Maximum likelihood estimation

Here, the parameters of the UGIW distribution are estimated by using the method of maxi-
mum likelihood. Let X1, X2, ...Xn be a random samples distributed according to the UGIW
distribution, then the likelihood function can be written as

Ln(θ) =
n∏
i=1

f(xi, α, λ, β)

By taking the natural logarithm, the log-likelihood function is obtained as;

logLn(θ) = n ln(αλβ)− 2
n∑
i=1

ln(Xi) + (β − 1)
n∑
i=1

ln(λui)− α
n∑
i=1

λβuβi (11)

Let

ui =
(1− xi)
xi

Then the components of the score function are

∂L

∂α
=
n

α
−

n∑
i=1

λβuβi ,

∂L

∂λ
=
n

λ
+ (β − 1)

n∑
i=1

ui
λui
− αβ

n∑
i=1

λβ−1uβi ,

∂L

∂β
=
n

β
+

n∑
i=1

lnλui − α
n∑
i=1

(λui)
β lnλui.
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If we set these equations to zero and solve them simultaneously, we can compute the MLEs
of the parameters α, β and λ. To solve these equations, it is usually more convenient to use
nonlinear optimization methods such as quasi-Newton algorithm.

4.2. Method of ordinary and weighted least squares

The least square (LS) and the weighted least square (WLS) are well known methods used
for estimating the unknown parameters (Swain, Venkatraman, and Wilson 1988). Here, we
consider the two methods to estimate the unknown parameters of the UGIW distribution.
Let x1,x2....., xn be the ordered observations obtained from a sample of size n from the UGIW
distribution., The LS and WLS estimates of α, λ and β can be obtained by minimizing the
following function with respect to α, λ and β, respectively

S(θ) =

n∑
i=1

ηi

{
e−α(λui)

β

− i

n+ 1

}2

(12)

where θ = (α, β, λ). The LS estimates denoted by α̂LSE , λ̂LSE and β̂LSE and can be obtained
by setting ηi = 1, while we can obtain the WLS estimates denoted by α̂WLS ; λ̂WLS and β̂WLS

by setting ηi = (n+1)2(n+2)
i(n−i+1) . These estimates can also be obtained by solving the following

equations

∂S(θ)

∂α
=

n∑
i=1

ηi

{
e−α(λui)

β

− i

n+ 1

}
ϕ1(ui, θ) = 0

∂S(θ)

∂β
=

n∑
i=1

ηi

{
e−α(λui)

β

− i

n+ 1

}
ϕ2(ui, θ) = 0

∂S(θ)

∂λ
=

n∑
i=1

ηi

{
e−α(λui)

β

− i

n+ 1

}
ϕ3(ui, θ) = 0

where
ϕ1(ui, θ) = − (λui)

β e−α(λui)
β

(13)

ϕ2(ui, θ) = −α (λui)
β ln(λui)e

−α(λui)β (14)

ϕ3(ui, θ) = −αβλβ−1uβi e
−α(λui)β (15)

where ui, i = 1, 2, ....n are the order observations of ui as defined earlier.

4.3. Method of percentile

In this subsection, we estimate the unknown parameters of UGIW distribution by the per-
centile method. This method was first introduced by Kao (1958) for estimating Weibull
parameters. Let pi = i

n+1 be the estimate of F (xi, θ), then the percentile estimates of the

parameters of UGIW distribution are denoted by α̂PE , λ̂PE and β̂PE and can be obtained by
minimizing the following function

P (θ) =

n∑
i=1

xi −
[

1

λ

[
− ln (pi)

α

]1/β
+ 1

]−1
2

(16)

with respect to α, λ and β or equivalently by solving the following non-linear equations

∂P (θ)

∂α
=

n∑
i=1

{
xi −

[
1

λ
v
1/β
i + 1

]−1}
$1(vi, θ) = 0
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∂P (θ)

∂β
=

n∑
i=1

{
xi −

[
1

λ
v
1/β
i + 1

]−1}
$2(vi, θ) = 0

∂P (θ)

∂λ
=

n∑
i=1

{
xi −

[
1

λ
v
1/β
i + 1

]−1}
$3(vi, θ) = 0

where vi = − ln(pi)
α

$1(vi, θ) =
v
1/β
i

αλβ
(

1
λv

1/β
i + 1

)2 , (17)

$2(vi, θ) =
v
1/β
i ln vi

λβ2
(

1
λv

1/β
i + 1

)2 , (18)

$3(vi, θ) =
v
1/β
i(

v
1/β
i + λ

)2 . (19)

4.4. Method of maximum product of spacing

According to Cheng and Amin (1983), the maximum product of spacing (MPS) estimates
of the unknown parameters of the UGIW distribution can be obtained based on the idea
of differences between the values of the cdf at consecutive data points. Based on a random
sample of size n from the UGIW distribution, the uniform spacings can be defined as follows

Di(θ) = F (xi, θ)− F (xi−1, θ), i = 1, 2, ..., n (20)

where F (x, θ) is the cdf given by (2), F (x0, θ) = 0 and F (xn+1, θ) = 1. The MPS estimates
denoted by α̂MPS , λ̂MPS and β̂MPS can be obtained by maximizing

M(θ) =
1

n+ 1

n+1∑
i=1

logDi(θ)

=
1

n+ 1

n+1∑
i=1

log
{
e−α(λui)

β

− e−α(λui−1)
β
}

with respect to α, λ and β or by solving the following equations

∂M(θ)

∂α
=

1

n+ 1

n+1∑
i=1

ϕ1(ui, θ)− ϕ1(ui−1, θ)

Di
= 0

∂M(θ)

∂β
=

1

n+ 1

n+1∑
i=1

ϕ2(ui, θ)− ϕ2(ui−1, θ)

Di
= 0

∂M(θ)

∂λ
=

1

n+ 1

n+1∑
i=1

ϕ3(ui, θ)− ϕ3(ui−1, θ)

Di
= 0

where ϕ1(ui, θ), ϕ2(ui, θ) and ϕ3(ui, θ) are given by (13), (14) and (15).

4.5. Method of Cramér-von-Mises

The Cramér-von-Mises estimates (CMEs) denoted by α̂CME , λ̂CME and β̂CME of α, λ and β
can be obtained by minimizing the following function with respect to α, λ and β.

C(θ) =
1

12n
+

n∑
i=1

{
e−α(λui)

β

− 2i− 1

2n

}2

(21)
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These estimates also can be obtained by solving the following equations

∂C(θ)

∂α
=

n∑
i=1

{
e−α(λui)

β

− 2i− 1

2n

}
ϕ1(ui, θ) = 0

∂C(θ)

∂β
=

n∑
i=1

{
e−α(λui)

β

− 2i− 1

2n

}
ϕ2(ui, θ) = 0

∂C(θ)

∂λ
=

n∑
i=1

{
e−α(λui)

β

− 2i− 1

2n

}
ϕ3(ui, θ) = 0

where ϕ1(ui, θ), ϕ2(ui, θ) and ϕ3(ui, θ) are defined by (13), (14) and (15).

5. Simulation results for complete data

It is not possible to compare the performance of the differernt estimators derived in the
previous sections theoretically, therefore, we conduct a Monte Carlo simulation study to
determine the best estimation method among six classical estimation methods. We generate
10,000 random samples of different sample sizes and different parameter values. We replicate
the process 1000 times and obtain the average of the estimates and the MSE in each case.
From Tables 2-7, it is noted that the maximum likelihood method of estimation performs
better than other methods in terms of MSE in most of the cases. The next best performing
estimator is the PE followed by LSE in most of the cases. Finally, we noted that the MSE
decreases in all the methods of estimation as the sample size increases, which indicates that
the all the methods of estimation are consistent. Form Tables 2-7, it is also observed that, PE
gives the least AWs in case of α while for β and λ, MLE performs better than other methods
of estimation. It is also observed that MLE performs better than other methods of estimation
in case of CPs in most of the cases.

Table 2: Average estimates, estimated average widths (AW) and coverage probabilities (CP)
of the parameters based on ML estimates

n α = 1.5 AW CP λ = 2.5 AW CP β = 2 AW CP

10 1.532(0.0155) 0.0303 0.924 2.426(0.0135) 0.0264 0.935 1.763(0.0126) 0.0246 0.929
20 1.530(0.0127) 0.0248 0.926 2.453(0.0112) 0.0219 0.937 1.823(0.0102) 0.0199 0.932
50 1.528(0.0106) 0.0207 0.929 2.487(0.0098) 0.0192 0.939 1.871(0.0086) 0.0168 0.935

150 1.517(0.0091) 0.0178 0.931 2.494(0.0079) 0.0154 0.942 1.901(0.0068) 0.0133 0.937
350 1.507(0.0075) 0.0147 0.934 2.498(0.0043) 0.0084 0.946 1.947(0.0049) 0.0096 0.940
500 1.503(0.0052) 0.0101 0.937 2.499(0.0028) 0.0054 0.948 1.992(0.0037) 0.0072 0.942

n α = 2 AW CP λ = 3 AW CP β = 1.5 AW CP

10 1.735(0.0196) 0.0384 0.932 2.956(0.0126) 0.0246 0.916 1.474(0.0103) 0.0201 0.934
20 1.764(0.0154) 0.0301 0.937 2.959(0.0112) 0.0219 0.918 1.476(0.0099) 0.0194 0.935
50 1.826(0.0120) 0.0235 0.941 2.962(0.0092) 0.0180 0.921 1.483(0.0089) 0.0174 0.937

150 1.874(0.0096) 0.0188 0.943 2.969(0.0076) 0.0148 0.924 1.486(0.0079) 0.0154 0.938
350 1.927(0.0078) 0.0152 0.945 2.973(0.0053) 0.0103 0.927 1.493(0.0048) 0.0094 0.940
500 1.993(0.0043) 0.0084 0.947 2.998(0.0027) 0.0052 0.929 1.499(0.0023) 0.0045 0.943

n α = 0.9 AW CP λ = 2 AW CP β = 0.5 AW CP

10 0.923(0.0152) 0.0297 0.920 1.976(0.0072) 0.0141 0.922 0.478(0.0088) 0.0172 0.918
20 0.919(0.0134) 0.0262 0.926 1.981(0.0053) 0.0103 0.924 0.486(0.0072) 0.0141 0.922
50 0.913(0.0112) 0.0219 0.928 1.985(0.0046) 0.0090 0.926 0.489(0.0068) 0.0133 0.925

150 0.908(0.0084) 0.0164 0.934 1.989(0.0038) 0.0074 0.927 0.492(0.0042) 0.0082 0.927
350 0.905(0.0038) 0.0074 0.936 1.992(0.0026) 0.0050 0.928 0.497(0.0031) 0.0060 0.928
500 0.903(0.0027) 0.0052 0.939 1.998(0.0013) 0.0025 0.930 0.501(0.0022) 0.0043 0.930
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Table 3: Average estimates, estimated average widths (AW) and coverage probabilities (CP)
of of the parameters based on WLS estimates

n α = 1.5 AW CP λ = 2.5 AW CP β = 2 AW CP

10 1.563(0.0266) 0.0521 0.909 2.561(0.0241) 0.0472 0.911 2.419(0.0246) 0.0482 0.912
20 1.559(0.0234) 0.0458 0.912 2.557(0.0210) 0.0411 0.913 2.391(0.0213) 0.0417 0.915
50 1.556(0.0204) 0.0399 0.914 2.546(0.0189) 0.0370 0.915 2.363(0.0172) 0.0337 0.918

150 1.548(0.0185) 0.0362 0.916 2.531(0.0173) 0.0339 0.919 2.289(0.0162) 0.0317 0.921
350 1.539(0.0152) 0.0297 0.918 2.528(0.0143) 0.0280 0.922 2.235(0.0137) 0.0268 0.924
500 1.531(0.0134) 0.0262 0.921 2.522(0.0122) 0.0239 0.926 2.164(0.0112) 0.0219 0.928

n alpha = 2 AW CP lambda = 3 AW CP β = 1.5 AW CP

10 2.125(0.0259) 0.0507 0.903 3.183(0.0263) 0.0515 0.907 1.546(0.0271) 0.0531 0.910
20 2.121(0.0224) 0.0439 0.905 3.178(0.0228) 0.0446 0.910 1.537(0.0250) 0.0490 0.913
50 2.119(0.0196) 0.0384 0.907 3.176(0.0202) 0.0395 0.914 1.529(0.0233) 0.0456 0.915

150 2.116(0.0153) 0.0299 0.910 3.168(0.0198) 0.0388 0.917 1.521(0.0212) 0.0415 0.919
350 2.112(0.0134) 0.0262 0.913 3.161(0.0172) 0.0337 0.920 1.516(0.0192) 0.0376 0.922
500 2.109(0.0112) 0.0219 0.918 3.159(0.0144) 0.0282 0.923 1.513(0.0173) 0.0339 0.925

n α = 0.9 AW CP λ = 2 AW CP β = 0.5 AW CP

10 0.931(0.0210) 0.0411 0.921 2.348(0.0161) 0.0315 0.918 0.553(0.0176) 0.0344 0.919
20 0.928(0.0187) 0.0366 0.925 2.339(0.0152) 0.0297 0.921 0.547(0.0159) 0.0311 0.920
50 0.927(0.0158) 0.0309 0.926 2.334(0.0137) 0.0268 0.924 0.542(0.0131) 0.0256 0.922

150 0.919(0.0137) 0.0268 0.929 2.326(0.0116) 0.0227 0.926 0.536(0.0102) 0.0199 0.924
350 0.916(0.0106) 0.0207 0.931 2.316(0.0093) 0.0182 0.928 0.532(0.0099) 0.0194 0.928
500 0.913(0.0088) 0.0172 0.934 2.310(0.0078) 0.0152 0.932 0.528(0.0081) 0.0158 0.932

Table 4: Average estimates, estimated average widths (AW) and coverage probabilities (CP)
of the parameters based on MPS estimates

n α = 1.5 AW CP λ = 2.5 AW CP β = 2 AW CP

10 1.557(0.0254) 0.0497 0.915 2.548(0.0216) 0.0423 0.920 2.351(0.0221) 0.0433 0.923
20 1.555(0.0212) 0.0415 0.917 2.542(0.0198) 0.0388 0.923 2.296(0.0167) 0.0327 0.925
50 1.547(0.0198) 0.0388 0.920 2.535(0.0178) 0.0348 0.925 2.241(0.0148) 0.0290 0.927

150 1.539(0.0176) 0.0344 0.922 2.528(0.0154) 0.0301 0.927 2.176(0.0134) 0.0262 0.930
350 1.532(0.0167) 0.0327 0.923 2.519(0.0138) 0.0270 0.930 2.125(0.0119) 0.0233 0.932
500 1.524(0.0146) 0.0286 0.925 2.512(0.0129) 0.0252 0.934 2.009(0.0098) 0.0192 0.935

n α = 2 AW CP λ = 3 AW CP β = 1.5 AW CP

10 2.113(0.0253) 0.0495 0.927 2.794(0.0153) 0.0299 0.936 1.524(0.0157) 0.0307 0.932
20 2.097(0.0233) 0.0456 0.929 2.817(0.0146) 0.0286 0.938 1.522(0.0136) 0.0266 0.935
50 2.056(0.0173) 0.0339 0.931 2.876(0.0113) 0.0221 0.941 1.519(0.0114) 0.0223 0.938

150 2.019(0.0164) 0.0321 0.933 2.934(0.0099) 0.0194 0.943 1.517(0.0096) 0.0188 0.942
350 2.013(0.0122) 0.0239 0.935 2.996(0.0074) 0.0145 0.946 1.512(0.0089) 0.0174 0.944
500 2.009(0.0089) 0.0174 0.938 3.005(0.0052) 0.0101 0.947 1.507(0.0051) 0.0099 0.946

n α = 0.9 AW CP λ = 2 AW CP β = 0.5 AW CP

10 0.858(0.0203) 0.0397 0.929 1.946(0.0149) 0.0292 0.935 0.526(0.0162) 0.0317 0.933
20 0.862(0.0176) 0.0344 0.931 1.949(0.0136) 0.0266 0.936 0.519(0.0148) 0.0290 0.936
50 0.865(0.0148) 0.0290 0.933 1.958(0.0125) 0.0245 0.938 0.515(0.0123) 0.0241 0.937

150 0.871(0.0127) 0.0248 0.935 1.968(0.0096) 0.0188 0.940 0.511(0.0109) 0.0213 0.941
350 0.878(0.0098) 0.0192 0.937 1.973(0.0076) 0.0148 0.942 0.507(0.0095) 0.0186 0.943
500 0.884(0.0078) 0.0152 0.939 1.987(0.0053) 0.0103 0.943 0.505(0.0072) 0.0141 0.945
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Table 5: Average estimates, estimated average widths (AW) and coverage probabilities (CP)
of the parameters based on CM estimates

n α = 1.5 AW CP λ = 2.5 AW CP β = 2 AW CP

10 1.584(0.0223) 0.0437 0.910 2.569(0.0186) 0.0364 0.916 1.563(0.0189) 0.0370 0.917
20 1.580(0.0192) 0.0376 0.913 2.563(0.0170) 0.0333 0.918 1.593(0.0157) 0.0307 0.919
50 1.574(0.0174) 0.0341 0.915 2.557(0.0159) 0.0311 0.919 1.646(0.0139) 0.0272 0.923

150 1.569(0.0153) 0.0299 0.917 2.549(0.0142) 0.0278 0.923 1.694(0.0124) 0.0243 0.927
350 1.553(0.0124) 0.0243 0.919 2.543(0.0126) 0.0246 0.926 1.724(0.0101) 0.0197 0.932
500 1.547(0.0104) 0.0203 0.923 2.537(0.0099) 0.0194 0.934 1.791(0.0086) 0.0168 0.936

n α = 2 AW CP λ = 3 AW CP β = 1.5 AW CP

10 2.241(0.0283) 0.0554 0.904 3.246(0.0302) 0.0591 0.903 1.563(0.0298) 0.0584 0.901
20 2.221(0.0263) 0.0515 0.906 3.239(0.0248) 0.0486 0.906 1.559(0.0289) 0.0566 0.904
50 2.194(0.0231) 0.0452 0.909 3.229(0.0232) 0.0454 0.908 1.551(0.0276) 0.0540 0.907

150 2.138(0.0201) 0.0393 0.910 3.221(0.0220) 0.0431 0.910 1.543(0.0243) 0.0476 0.909
350 2.132(0.0162) 0.0317 0.913 3.216(0.0199) 0.0390 0.913 1.536(0.0225) 0.0441 0.911
500 2.126(0.0134) 0.0262 0.918 3.212(0.0189) 0.0370 0.918 1.532(0.0204) 0.0399 0.915

n α = 0.9 AW CP λ = 2 AW CP β = 0.5 AW CP

10 0.967(0.0233) 0.0456 0.912 1.812(0.0178) 0.0348 0.920 0.576(0.0186) 0.0364 0.916
20 0.961(0.0192) 0.0376 0.916 1.815(0.0167) 0.0327 0.926 0.569(0.0163) 0.0319 0.918
50 0.958(0.0165) 0.0323 0.919 1.819(0.0149) 0.0292 0.931 0.564(0.0146) 0.0286 0.922

150 0.952(0.0146) 0.0286 0.921 1.824(0.0128) 0.0250 0.935 0.559(0.0138) 0.0270 0.925
350 0.948(0.0114) 0.0223 0.925 1.829(0.0099) 0.0194 0.938 0.554(0.0112) 0.0219 0.929
500 0.946(0.0092) 0.0180 0.929 1.834(0.0083) 0.0162 0.941 0.547(0.0096) 0.0188 0.931

Table 6: Average estimates, estimated average widths (AW) and coverage probabilities (CP)
of the parameters based on PE estimates

n α = 1.5 AW CP λ = 2.5 AW CP β = 2 AW CP

10 1.549(0.0153) 0.0299 0.932 2.403(0.0156) 0.0305 0.922 1.759(0.0156) 0.0305 0.922
20 1.541(0.0134) 0.0262 0.933 2.458(0.0130) 0.0254 0.926 1.826(0.0126) 0.0246 0.925
50 1.533(0.0112) 0.0219 0.934 2.478(0.0104) 0.0203 0.928 1.869(0.0094) 0.0184 0.927

150 1.521(0.0094) 0.0184 0.937 2.482(0.0082) 0.0160 0.932 1.923(0.0071) 0.0139 0.931
350 1.516(0.0082) 0.0160 0.940 2.496(0.0058) 0.0113 0.935 1.968(0.0062) 0.0121 0.934
500 1.508(0.0064) 0.0125 0.942 2.501(0.0042) 0.0082 0.938 2.003(0.0048) 0.0094 0.938

n α = 2 AW CP λ = 3 AW CP β = 1.5 AW CP

10 1.694(0.0201) 0.0393 0.912 2.693(0.0143) 0.0280 0.923 1.478(0.0124) 0.0243 0.927
20 1.737(0.0189) 0.0370 0.914 2.721(0.0126) 0.0246 0.927 1.483(0.0106) 0.0207 0.931
50 1.796(0.0153) 0.0299 0.916 2.796(0.0099) 0.0194 0.930 1.486(0.0093) 0.0182 0.935

150 1.834(0.0121) 0.0273 0.919 2.816(0.0086) 0.0168 0.932 1.493(0.0087) 0.0170 0.936
350 1.896(0.0097) 0.0190 0.923 2.873(0.0063) 0.0123 0.936 1.599(0.0076) 0.0148 0.941
500 1.926(0.0076) 0.0148 0.928 2.934(0.0041) 0.0080 0.940 1.503(0.0061) 0.0119 0.944

n α = 0.9 AW CP λ = 2 AW CP β = 0.5 AW CP

10 0.931(0.0198) 0.0388 0.909 1.956(0.0123) 0.0241 0.930 0.463(0.0103) 0.0201 0.934
20 0.928(0.0162) 0.0317 0.911 1.963(0.0113) 0.0221 0.934 0.476(0.0092) 0.0180 0.936
50 0.926(0.0126) 0.0246 0.916 1.979(0.0092) 0.0180 0.938 0.482(0.0079) 0.0154 0.942

150 0.917(0.0097) 0.0190 0.919 1.982(0.0078) 0.0152 0.941 0.487(0.0068) 0.0133 0.943
350 0.909(0.0073) 0.0143 0.922 1.993(0.0061) 0.0119 0.943 0.492(0.0045) 0.0088 0.946
500 0.905(0.0043) 0.0084 0.925 2.005(0.0033) 0.0064 0.945 0.498(0.0032) 0.0062 0.947
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Table 7: Average estimates,estimated average widths (AW) and coverage probabilities (CP)
of the parameters based on LS estimates

n α = 1.5 AW CP λ = 2.5 AW CP β = 2 AW CP

10 1.543(0.0186) 0.0364 0.916 2.523(0.0153) 0.0299 0.926 2.213(0.0173) 0.0339 0.918
20 1.538(0.0173) 0.0339 0.918 2.519(0.0132) 0.0258 0.930 2.198(0.0154) 0.0301 0.921
50 1.534(0.0141) 0.0276 0.923 2.517(0.0099) 0.0194 0.934 2.136(0.0132) 0.0258 0.925

150 1.529(0.0126) 0.0246 0.925 2.515(0.0076) 0.0148 0.937 2.107(0.0102) 0.0199 0.928
350 1.513(0.0097) 0.0190 0.929 2.512(0.0051) 0.0099 0.939 2.053(0.0089) 0.0174 0.932
500 1.506(0.0078) 0.0152 0.932 2.503(0.0044) 0.0086 0.942 2.007(0.0076) 0.0148 0.933

n α = 2 AW CP λ = 3 AW CP β = 1.5 AW CP

10 2.124(0.0213) 0.0417 0.916 3.172(0.0213) 0.0417 0.916 1.536(0.0163) 0.0319 0.923
20 2.093(0.0178) 0.0348 0.918 3.153(0.0112) 0.0219 0.918 1.531(0.0121) 0.0237 0.927
50 2.074(0.0153) 0.0299 0.923 3.124(0.0092) 0.0180 0.921 1.529(0.0092) 0.0180 0.930

150 2.067(0.0123) 0.0241 0.925 3.096(0.0086) 0.0168 0.923 1.526(0.0078) 0.0152 0.932
350 2.036(0.0099) 0.0194 0.928 3.017(0.0078) 0.0152 0.925 1.512(0.0069) 0.0135 0.936
500 2.007(0.0072) 0.0141 0.931 3.006(0.0066) 0.0129 0.928 1.509(0.0049) 0.0135 0.940

n α = 0.9 AW CP λ = 2 AW CP β = 0.5 AW CP

10 0.931(0.0136) 0.0266 0.934 2.167(0.0099) 0.0194 0.939 0.537(0.0116) 0.0227 0.931
20 0.927(0.0112) 0.0219 0.937 2.136(0.0082) 0.0160 0.941 0.526(0.0096) 0.0188 0.933
50 0.921(0.0089) 0.0174 0.940 2.111(0.0069) 0.0135 0.943 0.521(0.0081) 0.0158 0.936

150 0.918(0.0069) 0.0135 0.942 2.093(0.0047) 0.0092 0.945 0.519(0.0056) 0.0109 0.939
350 0.910(0.0058) 0.0113 0.945 2.024(0.0038) 0.0074 0.946 0.516(0.0048) 0.0094 0.942
500 0.901(0.0042) 0.0082 0.947 2.003(0.0026) 0.0050 0.948 0.501(0.0033) 0.0064 0.943

6. Application with complete data

In this section, we provide one application to real data set to illustrate the importance of the
UGIW distribution presented in Section 2. The MLEs of the model parameters are computed
and goodness-of-fit statistics with rival models are compared.

The data set consists of 63 observations of the strengths of 1.5cm glass fibers taken from
Smith and Naylor (1987). The data are: 0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13,
1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 1.49, 1.49, 1.49, 1.50, 1.50, 1.50,
1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64,
1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82,1.84, 1.84,
1.89, 2.00, 2.01, 2.24.

We divide the data by 2.24, to get the data set between 0 and 1.

We compare the fits of the UGIW distribution with some comprting models and their densities
are given by:

• The unit-Birnbaum-Saunders distribution (UB):

f(x) =
1

2xα
√

2π

[(
−β

log x

)1/2

+

(
−β

log x

)3/2
]

exp

{
1

2α2

(
log x

β
+

β

log x
+ 2

)}
• The unit-Weibull distribution (UW):

f(x) =
αβ

x
(− log x)β−1 exp

{
−α (− log x)β

}
• Unit-Gompertz distribution (UG):

f(x) = αβx−(β+1) exp
{
−α

(
x−β − 1

)}
• Unit Burr-III distribution:

f(x) =
λb

x2

[
1 + (

1

x
− 1)b

]−λ−1(1

x
− 1

)b−1
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• Kumaraswamy Distribution:

f(x) = αβxβ−1(1− xβ)α−1

The fitted models are compared using goodness-of-fit measures, namely: the maximized
log-likelihood under the model (−l̂), Cramèr-Von Mises (CVM), Anderson-Darling
(AD), Kolmogorov-Smirnov (KS) statistic and its p-value (PV ). It is clear that the
UGIW distribution fits very well the strengths of glass fibers data.

Table 8: Goodness-of-fit statistics for strengths of glass fibers dataset

Model −l̂ CVM AD KS PV

NGIWD 176.130 0.043 0.1447 0.1028 0.9949
UBS 177.902 0.049 0.1733 0.1268 0.9522
UG 176.334 0.041 0.1526 0.1093 0.9312
UW 176.986 0.048 0.1577 0.1124 0.9383
KW 177.261 0.045 0.1622 0.1179 0.9426
Unit-BurII 177.862 0.048 0.1668 0.1213 0.9498

Next, we obtain the estimates of the unknown parameters of the UGIW distribution using
six methods of estimation and the values of −l̂, KS and the corresponding PV are displayed
in Table 9 for strengths of glass fibers data set. The values in Table 9 reveal that the MLE
method can be used to estimate the parameters of the UGIW distribution. However, all
estimation methods perform well.

Table 9: The parameters estimate of the UGIW model using different methods of estimation
and l̂, KS statistic and corresponding PV

Method α λ β −l̂ KS PV

MLE 1.4683 0.2373 0.8634 176.130 0.1028 0.9949
WLSE 1.3641 0.1673 0.5343 176.153 0.1047 0.9923
PCS 1.5718 0.3674 0.9341 176.096 0.1067 0.9836
MPSE 2.3641 0.5346 1.2467 176.273 0.1086 0.9712
CMES 0.9769 0.4367 1.1364 176.530 0.1121 0.9865
LSEs 2.5263 0.9652 2.0366 177.956 0.1203 0.9124

7. Maximum likelihood estimation with right censored data

Let us consider X = (X1, X2, ..., Xn)T a sample from UGIW distribution with parameter
vector θ = (α, λ, β)T which can contain right censored data with fixed censoring time τ. Each
Xi can be written as Xi = (xi,∆i) where

∆i =

{
0 if xi is a censoring time

1 if xi is a failure time

The right censoring is assumed to be non informative, so the log-likelihood function can be
written as:

Ln(θ) =
n∑
i=1

∆i lnh(xi, θ) +
n∑
i=1

lnS(xi, θ)

=
n∑
i=1

∆i

[
ln(αλβ)− 2 ln(ui) + (β − 1) ln (λ)

−α (λui)
β − ln

(
1− exp

{
−α (λui)

β
}) ]+

n∑
i=1

ln
(

1− exp
{
−α (λui)

β
})
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The maximum likelihood estimators α̂ ,λ̂ and β̂ of the unknown parameters α, λ and β can
be derived from the nonlinear following score equations:

∂L

∂α
=

n∑
i=1

∆i

[
1

α
− (λui)

β

1− e−α(λui)β

]
+

n∑
i=1

(λui)
β e−α(λui)

β

1− e−α(λui)β
= 0

∂L

∂λ
=

n∑
i=1

∆i

[
β

λ
−

αβλβ−1uβi

1− e−α(λui)β

]
+ αβλβ−1

n∑
i=1

uβi e
−α(λui)β

1− e−α(λui)β
= 0

∂L

∂β
=

n∑
i=1

∆i

[
1

β
+ lnλui −

α (λui)
β ln (λui)

1− e−α(λui)β

]
+ α

n∑
i=1

(λui)
β ln (λui) e

−α(λui)β

1− e−α(λui)β
= 0

The explicit form of α̂, λ̂ and β̂ cannot be obtained, so we use numerical methods.

8. Estimated Fisher information matrix

The components of the estimated information matrix I = (̂ıij)(3×3) are obtained by

ı̂11 =
1

n

n∑
i=1

∆i

(
1

α
− (λui)

β

1− e−α(λui)β

)2

ı̂22 =
1

n

n∑
i=1

∆i

(
β

λ
−

αβλβ−1uβi

1− e−α(λui)β

)2

ı̂33 =
1

n

n∑
i=1

∆i

(
1

β
+ lnλui −

α (λui)
β ln (λui)

1− e−α(λui)β

)2

ı̂12 = ı̂21 =
1

n

n∑
i=1

∆i

(
1

α
− (λui)

β

1− e−α(λui)β

)(
β

λ
−

αβλβ−1uβi

1− e−α(λui)β

)

ı̂13 = ı̂31 =
1

n

n∑
i=1

∆i

(
1

α
− (λui)

β

1− e−α(λui)β

)(
1

β
+ lnλui −

α (λui)
β ln (λui)

1− e−α(λui)β

)

ı̂23 = ı̂32 =
1

n

n∑
i=1

∆i

(
β

λ
−

αβλβ−1uβi

1− e−α(λui)β

)(
1

β
+ lnλui −

α (λui)
β ln (λui)

1− e−α(λui)β

)

where α, λ and β are replaced by their MLEs α̂, λ̂ and β̂.

9. Test statistic for right censored data

Let X1, ..., Xn be n i.i.d. random variables grouped into k classes Ij . To assess the adequacy
of a parametric model F0, we consider

H0 : P (Xi ≤ x | H0) = F0(x; θ), x ≥ 0, θ = (θ1, ..., θs)
T ∈ Θ ⊂ Rs

when data are right censored and the parameter vector θ is unknown, Bagdonavičius and
Nikulin (2011) proposed a statistic test Y 2 based on the vector

Zj =
1√
n

(Uj − ej), j = 1, 2, ..., k, with k � s.
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This represents the differences between the observed and the expected numbers of failures
(Uj and ej) to fall into these grouping intervals Ij = (aj−1, aj ] with a0 = 0, ak = τ , where τ
is a finite time. The authors considered aj as random data functions such as the k intervals
chosen have equal expected numbers of failures ej .

The statistic test Y 2 is defined by

Y 2 = ZT Σ̂−Z =
k∑
j=1

(Uj − ej)2

Uj
+Q

where Z = (Z1, ..., Zk)
T and Σ̂− is a generalized inverse of the covariance matrix Σ̂ and

Q = W T Ĝ−W Âj = Uj/n, Uj =
∑

i:Xi∈Ij

∆i,

W = (W1, ....,Ws)
T , Ĝ = [ĝll′ ]sxs, ĝll′ = îll′ −

k∑
j=1

ĈljĈl′jÂ
−1
j ,

Ĉlj =
1

n

∑
i:Xi∈Ij

∆i
∂

∂θ
lnh(ui, θ̂), îll′ =

1

n

n∑
i=1

∆i
∂ lnh(ui, θ̂)

∂θl

∂ lnh(ui, θ̂)

∂θl′
,

Ŵl =
k∑
j=1

ĈljÂ
−1
j Zj , l, l′ = 1, ...., s

θ̂ is the maximum likelihood estimator of θ on initial non-grouped data.

Under the null hypothesis H0 , the limit distribution of the statistic Y 2 is chi-square with
k = rank(Σ) degrees of freedom. The description and applications of modified chi-square
tests are discussed in Voinov, Nikulin, and Balakrishnan (2013).

The interval limits aj for grouping data into j classes Ij are considered as data functions and
defined by

âj = H−1

(
Ej −

∑i−1
l=1H (ul, θ)

n− i+ 1
, θ̂

)
, âk = max

(
X(n),τ

)
such that the expected failure times ej to fall into these intervals are ej = Ek

k for any j with

Ek =
∑n

i=1H
(
ui, θ̂

)
. The distribution of this test statistic Y 2

n is chi-square (see Voinov et al.

(2013)).

9.1. Criteria test for UGIWD

For testing the null hypothesis H0 that data belong to the UGIW model, we construct a
modified chi-squared type goodness-of-fit test based on the statistic Y 2. Suppose that τ is a
finite time and the observed data are grouped into k > s sub-intervals Ij = (aj−1, aj ] of [0, τ ] .
The limit intervals aj are considered as random variables such that the expected numbers of
failures in each interval Ij are the same, so the expected numbers of failures ej are obtained
as

Ej =
−j
k − 1

n∑
i=1

ln(1− e−αu
β
i ), j = 1, ..k − 1

and

âj =

 1

λ

(
− 1

α
ln

(
1− exp

(
Ej +

∑i−1
l=1 ln(1− e−αu

β
l )

n− i+ 1

)))1/β

+ 1

−1 , j = 1, ..k − 1
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Estimated matrix Ŵ
The components of the estimated matrix Ŵ are derived from the estimated matrix Ĉ which
is given by:

Ĉ1j =
1

n

n∑
i:xi∈Ij

∆i

[
1

α
− (λui)

β

1− e−α(λui)β

]

Ĉ2j =
1

n

n∑
i:xi∈Ij

∆i

[
β

λ
−

αβλβ−1uβi

1− e−α(λui)β

]

Ĉ3j =
1

n

n∑
i:xi∈Ij

∆i

[
1

β
+ lnλui −

α (λui)
β ln (λui)

1− e−α(λui)β

]

and

Ŵl =
k∑
j=1

ĈljA
−1
j Zj , l = 1, ..,m j = 1, .., k.

Therefore, the quadratic form of the test statistic can be obtained easily as:

Y 2
n

(
θ̂
)

=
k∑
j=1

(Uj − ej)2

Uj
+ Ŵ T

ı̂ll′ − k∑
j=1

ĈljĈl′jÂ
−1
j

−1 Ŵ .

10. Simulation results for censored data

We generated N = 10, 000 right censored samples with different sample sizes and different pa-
rameter values from the UGIW model. Using R statistical software and the Barzilai-Borwein
(BB) algorithm (Ravi and Gilbert 2009), we calculate the averages of the simulated values
of maximum likelihood estimates of the unknown parameters and their corresponding mean
squared errors (MSEs). The results are presented in Table 10. From Table 10, we can notice
that the mean squared errors are very small, which confirms the convergence of the maximum
likelihood estimators.

Table 10: Averages of the simulated values of MLEs α̂, λ̂ and β̂ and their corresponding
mean squared errors

N = 10, 000 n1 = 15 n2 = 25 n3 = 50 n4 = 130 n5 = 350 n6 = 500

α̂ = 1.2 1.1398(0.0154) 1.1521(0.0126) 1.1623(0.0094) 1.1756(0.0072) 1.1934(0.0046) 1.2009(0.0023)

λ̂ = 0.9 0.9374(0.0079) 0.9326(0.0067) 0.9299(0.0052) 0.9212(0.0039) 0.9156(0.0027) 0.9010(0.0016)

β̂ = 3 2.9384(0.0069) 2.9541(0.0058) 2.9613(0.0046) 2.9765(0.0034) 2.9821(0.0018) 2.9987(0.0009)

n1 = 15 n2 = 25 n3 = 50 n4 = 130 n5 = 350 n6 = 500

α̂ = 2.7 2.6621(0.0106) 2.6689(0.0082) 2.6776(0.0061) 2.6897(0.0047) 2.6933(0.0032) 2.6995(0.0012)

λ̂ = 1.5 1.5386(0.0112) 1.5314(0.0091) 1.5263(0.0079) 1.5195(0.0068) 1.5128(0.0053) 1.5012(0.0033)

β̂ = 2 1.9587(0.0082) 1.9624(0.0065) 1.9765(0.0041) 1.9875(0.0025) 1.9902(0.0016) 1.9999(0.0007)

n1 = 15 n2 = 25 n3 = 50 n4 = 130 n5 = 350 n6 = 500

α̂ = 3 3.0421(0.0089) 3.0374(0.0076) 3.0246(0.0051) 3.0108(0.0034) 3.0034(0.0013) 3.0003(0.0005)

λ̂ = 1.8 1.8462(0.0074) 1.8345(0.0055) 1.8204(0.0038) 1.8124(0.0021) 1.8026(0.0012) 1.8001(0.0003)

β̂ = 0.7 0.6612(0.0097) 0.6694(0.0086) 0.6748(0.0067) 0.6823(0.0046) 0.6920(0.0037) 0.6998(0.0017)

10.1. Simulation results for test statistic Y 2

In order to study the performance of the test statistic proposed in this work, a simulation study
has been carried out. Thus, for testing the null hypothesis H0 with respect to sample belongs
to UGIW distribution, we draw 10, 000 samples data from UGIW model with different sample



Austrian Journal of Statistics 95

sizes and different parameter values to calculate Y 2 statistic. Then, we compute the number
of cases of rejection of the null hypothesis H0, when the values of criteria statistic Y 2 are
superior to χ2

ε (k) (the quantile of the chi-square distribution with k degrees of freedom).
We give a comparison between the different theoretical values of significance level ε (with
ε = 0.10, ε = 0.05, ε = 0.01) and their simulated levels (empirical levels) of significance in
Table 11. As can be seen, the values of the calculated empirical levels of Y 2 test are very
close to those of their corresponding theoretical levels of the chi-squared distributions with k
degrees of freedom. Thus, we conclude that the proposed test is well suited to the UGIW
distribution.

Table 11: Simulated levels of significance for Y 2
n test for UGIW (θ̂) model against their

theoretical values (ε = 0.01, 0.05, 0.10)

N=10,000 n1 = 10 n2 = 20 n3 = 50 n4 = 130 n5 = 350 n6 = 500

ε = 1% 0.0063 0.0072 0.0085 0.0092 0.0095 0.0106
ε = 5% 0.0321 0.0336 0.0398 0.0412 0.0475 0.0496
ε = 10% 0.0846 0.0874 0.0890 0.0902 0.0951 0.0989

N = 10, 000 n1 = 10 n2 = 20 n3 = 50 n4 = 130 n5 = 350 n6 = 500

ε = 1% 0.0046 0.0053 0.0064 0.0072 0.0081 0.0092
ε = 5% 0.0442 0.0467 0.0471 0.0483 0.0494 0.0509
ε = 10% 0.0916 0.0942 0.0962 0.0974 0.0989 0.1005

N = 10, 000 n1 = 10 n2 = 20 n3 = 50 n4 = 130 n5 = 350 n6 = 500

ε = 1% 0.0043 0.0055 0.0066 0.0077 0.0086 0.0095
ε = 5% 0.0375 0.0394 0.0428 0.0451 0.0465 0.0489
ε = 10% 0.0829 0.0862 0.0898 0.0924 0.0945 0.0978

11. Application to right censored real data

We consider the following data consisting of 42 pieces of strength of a certain type of braided
cord that had been weathered for a specified length of time. This data set is taken from
Crowder, Kimber, Smith, and Sweeting (1991). The observed right-censored strength-values
are given below:

26.8∗, 29.6∗, 33.4∗, 35∗, 36.3, 40∗, 41.7, 41.9∗, 42.5∗, 43.9, 49.9, 50.1, 50.8,51.9, 52.1,52.3,52.3,52.4,
52.6,52.7, 53.1, 53.6, 53.6, 53.9, 53.9, 54.1, 54.6, 54.8, 54.8, 55.1, 55.4, 55.9, 56, 56.1, 56.5, 56.9,
57.1, 57.1, 57.3, 57.7, 57.8, 58.1, 58.9, 59, 59.1, 59.6, 60.4, 60.7

We divide the data by 60.7 in order to get data lies between 0 and 1.

We use the test statistic provided above to verify whether the above data set can be modeled
by UGIW distribution , and at this end, we first calculate the maximum likelihood estimators
of the unknown parameters

θ̂ =
(
α̂, λ̂, β̂

)T
= (2.1865, 5.623, 3.2152)T .

To calculate the test statistic Y 2
n , we need the following results (see Table 12). We choose

k = 5 grouping intervals of Ij .

So, we obtain the value of Y 2
n as

Y 2
n = X2 +Q = 4.1387 + 1.9568 = 6.0955

For significance level ε = 0.05, the critical value χ2
5 = 11.0705 is greater than the value of

Y 2
n = 6.0955, so we can say that the proposed model UGIW fit these data.
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Table 12: Values of âj , ej , Uj , Ĉ1j , Ĉ2j , Ĉ3j

âj 0.7085 0.8715 0.9099 0.9422 1

UJ 9 11 10 8 10

Ĉ1j −0.6358 −0.8459 −0.6274 −0.8452 −0.7965

Ĉ2j −0.8647 −0.9658 −1.1526 0.0254 0.0845

Ĉ3j 0.8596 0.9485 0.8124 0.7485 0.8174

ej 1.3859 1.3859 1.3859 1.3859 1.3859

We also calculated the test statistic Y 2
n to fit the data set to the competing models. The

results are given in Table 13.

Table 13: Values of the test statistic Y 2
n for strength of a braided cord data of different

competing models

Modeling distribution Y 2
n

UGIWD 6.0955

UBS 8.2635

UG 6.4253

UW 6.9568

KW 7.6352

Unit−BurII 7.8569

12. Concluding remarks

In this study, a new bounded distribution has been introduced in the (0, 1) intervals by
transformation method which provides better fits than unit-Birnbaum-Saunders, unit-Weibull,
Unit-Gompertz, Unit Burr-III and Kumaraswamy distributions. Some statistical properties
has been derived. The unknown parameters of the UGIW distribution are estimated by six
different frequentist methods of estimation and obtained their CIs. The practical applicability
of the UGIW distribution has been illustrated by means of one real-life data application. Next,
we provide the formulae of the criteria statistic of the modified chi-squared goodness-of-fit
test for UGIW model when data are right censored and the parameters are unknown. The
statistic Y 2 can be used to check the validity of the UGIW model. The main advantage of
the chi-square goodness-of-fit tests for censored data is that the limiting distribution of these
statistics is the well-known χ2 distribution. We hope that the results obtained through this
study will be useful for practionnars in several fields. The performances of the results and
the effectiveness of the proposed test are shown by simulation study and real data analysis.

Acknowledgments

The authors would like to thank the Editor, Associate Editor and the referees for careful
reading and for valuable comments that greatly improved the presentation of article.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.



Austrian Journal of Statistics 97

References

Abd-Elfattah AM (2011). “Goodness of Fit Test for the Generalized Rayleigh Distribution.”
Journal of Statistical Computation and Simulation, 83, 357–366.

Abdelfattah EH (2008). “Goodness of Fit Tests for the Two Parameter Weibull Distribution.”
Journal of Statistical Theory and Applications, 7, 279–291.

Aidi K, Seddik-Ameur N (2016). “Chi-square Tests for Generalized Exponential AFT Distri-
butions with Censored Data.” Electronic Journal of Applied Statistical Analysis, 9, 371–384.

Al-Omari AI, Zamanzade E (2016). “Different Goodness of Fit Tests for Rayleigh Distribution
in Ranked Set Sampling.” Pakistan Journal of Statistics and Operation Research, XII, 25–
39.

Aryal G, Elbatal I (2015). “Kumaraswamy Modified Inverse Weibull Distribution.” Applied
Mathematics and Information Sciences, 9, 651–660.

Badr MM (2019). “Goodness-of-fit Tests for the Compound Rayleigh Distribution with Appli-
cation to Real Data.” Heliyon. doi:https://doi.org/10.1016/j.heliyon.2019.e02225.
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Appendix

#p represents parameters\\

#dd represents score fonctions\\

library(BB)\\

library(nleqslv)\\

g<- function(p){n=30;\\

u<- x/(1-x)\\

si <- (P[2]*u)^P[3]\\

zi <- u^P[3]\\

pi <- (P[2]*u)\\

dd <- rep(NA, length(p))\\

dd[1]<- sum(delta*((1/P[1])-(si/(1-exp(-P[1]*si)))))+sum((si*exp(-P[1]*si))/(1-

exp(-P[1]*si))\\

dd[2]<- sum(delta*((P[3]/P[2])-(( P[1]*P[3]*P[2]^(P[3]-1)*zi)/( 1-exp(-P[1]*si))))+

(P[1]*P[3]*P[2]^(P[3]-1))*sum((zi*exp(-P[1]*si))/(1-exp(-P[1]*si)))\\

dd[3]<- sum(delta*((1/P[3])+ln(pi)-((P[1]*si*ln(pi))/( 1-exp(-P[1]*si)))))+

P[1]*sum((si*ln(pi)*exp(-P[1]*si))/(1-exp(-P[1]*si)))\\

dd}\\

p0 <- rep(0.8,1.2,1.9) ##We can change it##\\

gg(p0)\\

BBsolve(par = p0, fn = gg)\\

BBsolve(par = p0, fn = gg)$par\\

nleqslv(x=p0,fn=gg)$\\

Table 11\\

r<-round(1+2.303*log(n,10))\\

a<-1:(r-1);; a0<-+1e-40; ar <-1;\\

E_j<- 1:(r)\\

for (j in 1:r){ E_j[j] <- (j/(r))*sum(H)}\\
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U_j<- 1:r\\

for (j in 1:r) {U_j[j]<-0}\\

for (i in 1:n){ if (x[i]< a_j[1]) U_j[1]<-U_j[1]+1 }\\

for (i in 1:n){ if (x[i]>=a_j[r-1]) U_j[r]=U_j[r]+1}\\

for (j in 2:(r-1)) {

for (i in 1:n) {

if ((x[i]<a_j[j]) \& (x[i]>=a_j[j-1])) {U_j[j]<-U_j[j]+1}

}}\\

e_j<- sum(H)/r\\

X_<- ((U - e_j)^2)/U_j\\

X2<- sum(X_)\\

Z_j<- (U - e_j)/sqrt(n)\\

C1j<- 1/n* sum(delta*((1/P[1])-(si/(1-exp(-P[1]*si)))))\\

C2j<- 1/n* sum(delta*((P[3]/P[2])-((\\ P[1]*P[3]*P[2]^(P[3]-1)*zi)/(1-exp(-P[1]*si))))\\

C3j<-1/n * sum(delta*((1/P[3])+ln(pi)-((P[1]*si*ln(pi))/(\\ 1-exp(-P[1]*si)))))\\

Aj<- U_j/n\\

Wj<- sum(Cij*Aj-1*Z_j)\\

Y2n<- X2+Q\\

ca<-qchisq(0.95,r-1)\\

ca\\

if (Y2n<ca) {print("H0 est acceptée")} else print("H0 est rejetée")Y2n\\
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