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Abstract

This paper is concerned with the estimation of integral functionals of the fourth order
spectral densities for stationary random fields based on tapered data. The considered
functionals are related, in particular, to the problem of parameter estimation in the spec-
tral domain. The main focus is on the bias of the proposed estimators, conditions for
their consistency are also discussed.
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1. Introduction

This paper is concerned with developing the methods for estimation of random fields in
the spectral domain based on the higher-order structure of the fields. Note that higher-
order statistics methods are relevant especially and essentially in those contexts where to
the considered models of random processes and fields such properties pertain as nonlinearity
and/or non-Gaussianity, and in all other situations where the use of the information on the
second order dependence structure is not sufficient for statistical inference.

LetX (t) , t ∈ I, be a real-valued measurable strictly stationary zero-mean random field, where
I is Rd or Zd endowed with the measure ν(·) which is the Lebesgue or the counting measure
(ν({t}) = 1) respectively. Suppose that the field has spectral densities of order k = 2, 3, ...,
that is, there exist the functions fk (λ1, ..., λk−1) ∈ L1

(
Sk−1

)
such that the cumulant function

of k-th order is given by

ck (t1, ..., tk−1) =

∫
Sk−1

fk (λ1, ..., λk−1) ei
∑k−1

1 (λj ,tj)dλ1...dλk−1,

where S = Rd or (−π, π]d for the continuous and discrete cases respectively.

Let the field X (t) be observed over the domain DT = [−T, T ]d ⊂ I.

We will consider the problem of estimation of the integrals of the (cumulant) spectral densities
of the fourth order:

J4 (ϕ) =

∫
S3
ϕ(λ1, λ2, λ3)f4(λ1, λ2, λ3)dλ1dλ2dλ3, (1)
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and, as the auxiliary results, we will also study the estimates for the following integrals of the
second order spectral densities:

J2 (ϕ) =

∫
S2
ϕ(λ1, λ2)f2(λ1)f2(λ2)dλ1dλ2, (2)

Ĵ2 (ϕ) =

∫
S
ϕ(λ)f2

2 (λ)dλ (3)

for the functions ϕ, which are appropriate for each particular integral (1)–(3).

Note that integrals (1) appear, in particular, in the problems of parameter estimation in
the spectral domain within the minimum contrast (or quasi-likelihood) method developed in
Anh, Leonenko, and Sakhno (2004), Anh, Leonenko, and Sakhno (2007b), where estimators
are based on the Ibragimov functional constructed with the use of information on higher-order
spectral densities. The integrals (3) appear in the expressions for covariance matrices of the
asymptotic normal law for the Whittle estimators for Gaussian processes and fields, as well
as for the Ibragimov estimators based on the second order spectra.

We study the estimators for the functionals (1)–(3) based on tapered periodograms introduced
below and mainly focussing on bias of the considered estimators. The use of data tapers leads
to the bias reduction, which is especially important for spatial data: tapers can help to
attenuate the so-called “edge effects” (see, e.g. Dahlhaus and Künsch (1987), Guyon (1995)).

Consider the tapered values
{hT (t)X (t) , t ∈ DT } ,

where hT (t) = h (t/T ) , t = (t(1), ..., t(d)) ∈ Rd, and the taper h (t) factorizes as h (t) =∏d
i=1 h̃

(
t(i)
)
, t(i) ∈ R1, with h̃ (·) satisfying the assumption below.

Assumption 1. h̃ (t) , t ∈ R, is a positive measurable even function of bounded variation
with bounded support: h̃ (t) = 0 for |t| > 1.

Denote

H̃k,T (λ) =

∫
h̃T (t)ke−iλtν (dt) and Hk,T (λ) =

∫
hT (t)ke−i(λ,t)ν (dt) =

d∏
i=1

H̃k,T (λ(i)).

The integrals above are one-dimensional and d-dimensional with corresponding measure ν (·)
(for the discrete case we have sums).

Define the finite Fourier transform of tapered data {hT (t)X (t) , t ∈ DT } :

dh
T

(λ) =

∫
hT (t)X(t)e−i(λ,t)ν(dt), λ ∈ S, (4)

the tapered periodograms of the second and the third orders:

Ih2,T (λ) =
1

(2π)d H2,T (0)
dh
T

(λ)dh
T

(−λ), (5)

Ih3,T (λ1, λ2) =
1

(2π)2dH3,T (0)
dh
T

(λ1)dh
T

(λ2)dh
T

(−λ1 − λ2)

(provided that H2,T (0) 6= 0 and H3,T (0) 6= 0 correspondingly),

and the tapered periodogram of k-th order (provided that Hk,T (0) 6= 0):

Ihk,T (λ1, ..., λk−1) =
1

(2π)(k−1)dHk,T (0)

k∏
i=1

dh
T

(λi) , λi ∈ S, (6)

where
∑k

i=1 λi = 0, but no proper subset of λi has sum 0 (that is, there is no other sub-
set {λi, i ∈ ν} , where ν = {i1, ..., il} ⊂ {1, ..., k} and

∑
i∈ν λi = 0, these subsets are called
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submanifolds (following, e.g., Brillinger and Rosenblatt (1967)). Denote the set of such sub-
manifolds by Λk.

The statistic (6) is a natural generalization of the second-order periodogram and can serve as
an estimator for the spectral density of k-th order fk (λ1, ..., λk−1) at all frequencies but except
those from Λk. Consistent estimators of fk can be obtained by taking weighted averages of
values (6) at the neighborhood of frequencies of interest, avoiding points from Λk.

Therefore, the problem of estimations of the integrals

Jk (ϕ) =

∫
Sk−1

ϕk(λ)fk(λ)dλ (7)

can be solved by the following approaches:

1) let the function ψ(λ1, . . . , λk) defined on {λi :
∑k

i=1 λi = 0} be such that ψ(λ1, . . . , λk) ≡ 0
for λ = (λ1, . . . , λk) ∈ Λk, then one can consider the empirical spectral functional∫

Sk−1

ϕk(λ)Ihk,T (λ)ψ(λ)dλ (8)

as the estimate for the integral ∫
Sk−1

ϕk(λ)fk(λ)ψ(λ)dλ (9)

(see, e.g., Anh et al. (2004), Anh et al. (2007b));

2) another way to exclude from consideration the points from Λk is to consider the functional

J∗k,T (ϕk) = J∗k,T,ε (ϕk) =

∫
Sk−1
ε

ϕk (λ) Ihk,T (λ) dλ, (10)

as an estimate for

J∗k (ϕk) = J∗k,ε (ϕk) =

∫
Sk−1
ε

ϕk (λ) fk (λ) dλ, (11)

for all ε > 0, where the integration is taken over Sk−1, but avoiding the frequencies on and
neighboring to the submanifolds {

∑
i∈ν λi = 0, where ν = {i1, ..., il} ⊂ {1, ..., k}}. More

precisely, Sk−1
ε = Sk−1\{λ :

∣∣∑
i∈ν λi

∣∣ < ε for all ν ⊂ {1, ..., k}}, where |y| = max1≤i≤d |y(i)|.
This approach was used in Anh, Leonenko, and Sakhno (2010), under some conditions the
statistics (11) can serve as an estimate for (7).

One more way to estimate the integral (7) is via recursion, that is, the estimate is constructed
with the use of some combination of the integral of the periodogram of the k-th order and
integrals of products of lower order periodograms. This approach was suggested in Taniguchi
(1982) for the case of the integrals of the fourth order spectra and was further generalized
in Keenan (1987) for the estimation of integrals of the k-th order spectra. Both mentioned
authors considered discrete time processes and used conditions in the time domain, namely,
conditions of summability of cumulants. Extension of this method to the case of fields was
presented in Sakhno (2011).

In the present paper we develop the ideas of papers Taniguchi (1982), Keenan (1987), Sakhno
(2011) and study the estimates for the fourth order spectral integrals (1) and integrals (2)-(3)
for stationary random fields, basing on the tapered data and with conditions formulated in
the spectral domain. The main results are stated in the next section and followed by some
discussion. Auxiliary facts and formulas used for the proofs are relegated into Appendix.

2. Estimation of the spectral functionals from tapered data

Consider the problem of estimation of the functional

J4 (ϕ) =

∫
S3
ϕ(λ1, λ2, λ3)f4(λ1, λ2, λ3)dλ1dλ2dλ3. (12)
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Introduce the empirical spectral functional obtained by substitution of the fourth order ta-
pered periodogram Ih4,T (given by the formula (6) with k = 4) instead of f4 into (12):

J4,T (ϕ) =

∫
S3
ϕ(λ1, λ2, λ3)Ih4,T (λ1, λ2, λ3)dλ1dλ2dλ3. (13)

Note that we do not restrict the domain of integration and do not exclude the sets Λ4 as it
would be prescribed by the definition of the 4-th order periodogram.

The expectation of the empirical functional (13) is given by

EJ4,T (ϕ) =
1

(2π)3dH4,T (0)

∫
S3
ϕ(λ1, λ2, λ3)

∫
S3
f4(γ1, γ2, γ3) (14)

×
3∏
i=1

H1,T (γi − λi)H1,T (−
3∑
i=1

γi +

3∑
i=1

λi)dγ1dγ2dγ3dλ1dλ2dλ3

+

∫
S3
ϕ(λ1, λ2, λ3)

∫
S
f2(γ1)H1,T (γ1 − λ1)H1,T (−γ1 − λ2)

×
∫
S
f2(γ2)H1,T (γ2 − λ3)H1,T (−γ2 +

3∑
i=1

λi)dγ1dγ2dλ1dλ2dλ3

+

∫
S3
ϕ(λ1, λ2, λ3)

∫
S
f2(γ1)H1,T (γ1 − λ1)H1,T (−γ1 − λ3)

×
∫
S
f2(γ2)H1,T (γ2 − λ2)H1,T (−γ2 +

3∑
i=1

λi)dγ1dγ2dλ1dλ2dλ3

+

∫
S3
ϕ(λ1, λ2, λ3)

∫
S
f2(γ1)H1,T (γ1 − λ1)H1,T (−γ1 +

3∑
i=1

λi)

×
∫
S
f2(γ2)H1,T (γ2 − λ2)H1,T (−γ2 − λ3)dγ1dγ2dλ1dλ2dλ3.

For calculations we used the formula for cumulants of products of random variables to obtain

EIh4,T (λ1, λ2, λ3) = cum(dh
T

(λ1), dh
T

(λ2), dh
T

(λ3), dh
T

(−λ1 − λ2 − λ3))

+cum(dh
T

(λ1), dh
T

(λ2))cum(dh
T

(λ3), dh
T

(−λ1 − λ2 − λ3))

+cum(dh
T

(λ1), dh
T

(λ3))cum(dh
T

(λ2), dh
T

(−λ1 − λ2 − λ3))

+cum(dh
T

(λ1), dh
T

(−λ1 − λ2 − λ3))cum(dh
T

(λ2), dh
T

(λ3))

and then we used the formula A.1 (see Appendix) for cumulants of finite Fourier transforms.

We now analyze the asymptotic behavior of EJ4,T (ϕ).

Introduce the assumptions, which will be used to state the results. In what follows we suppose
that the taper satisfies Assumption 1 and for different statements we will need some additional
assumptions on the taper and different assumptions on the spectral densities f2, f4 and the
function ϕ.

Assumption 2. The taper h̃(t) is a Lipschitz-continuous function on [−1, 1].

Assumption 3. The function κh2 (u) =
∣∣∣∫ h̃ (t) e−itudt

∣∣∣2satisfies:∫
|u|lκh2 (u) (u) du <∞, l = 1, 2.

Assumption 4. The function κh4 (u) =
∫
h̃ (t) e−itudt

∫
h̃3 (t) eitudt satisfies:∫

|u|lκh3 (u) (u) du <∞, l = 1, 2.
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Assumption 5. The spectral densities f2, f4 and the function ϕ are continuous and for the
case S = R suppose additionally ϕ ∈ L1 ∩ L2, f4 ∈ L2.

Assumption 6. The spectral density f4 and the function ϕ are twice boundedly differentiable
and ϕ ∈ L1.

Assumption 7. The spectral density f2 is twice boundedly differentiable and ϕ ∈ L1.

Theorem 1. I. Let the spectral densities f2, f4 and the function ϕ satisfy Assumption 5.
Then as T →∞

EJ4,T (ϕ) →
∫
S3
ϕ(λ1, λ2, λ3)f4(λ1, λ2, λ3)dλ1dλ2dλ3 (15)

+

∫
S2
{ϕ(λ1,−λ1, λ2) + ϕ(λ1, λ2,−λ1)

+ ϕ(λ1,−λ1, λ2)}f2(λ1)f2(λ2)dλ1dλ2 =: J̃4(ϕ)

II. Let the taper h̃(t) satisfy Assumption 2 for the case of discrete-parameter fields, and for
the case of continuous-parameter fields let Assumption 4 hold; the spectral density f4 and the
function ϕ satisfy Assumption 6. Then

EJ4,T (ϕ)− J̃4(ϕ) = O(T−2) as T →∞. (16)

Proof. I. The expression (14) for EJ4,T (ϕ) can be written in the form

EJ4,T (ϕ) =

∫
S3
ϕ(λ1, λ2, λ3)

∫
S3
f4(γ1, γ2, γ3) (17)

×Φ4,T (γ1 − λ1, γ2 − λ2, γ3 − λ3)dγ1dγ2dγ3dλ1dλ2dλ3

+

∫
S3
ϕ(λ1, λ2, λ3)

∫
S2
f2(γ1)f2(γ2)Φ4,T (γ1 − λ1,−γ1 − λ2, γ2 − λ3)dγ1dγ2dλ1dλ2dλ3

+

∫
S3
ϕ(λ1, λ2, λ3)

∫
S2
f2(γ1)f2(γ2)Φ4,T (γ1 − λ1,−γ1 − λ3, γ2 − λ2)dγ1dγ2dλ1dλ2dλ3

+

∫
S3
ϕ(λ1, λ2, λ3)

∫
S2
f2(γ1)f2(γ2)Φ4,T (γ1 − λ1, γ2 − λ2,−γ2 − λ3)dγ1dγ2dλ1dλ2dλ3,

where Φ4,T (u1, u2, u3) are the multidimensional kernels of Fourier type (see Appendix). Under
the imposed assumptions on the functions ϕ, f2, f4, using the property (A.2) of the kernels,
we obtain the convergence (24).

II. The proof of the second part of the theorem is obtained by the reasoning similar to those
applied in Anh et al. (2010) for the proof of Theorem 2.3, where the expectation of the
functional J∗k (ϕk) (see (11)) was analyzed, namely, we adapt for our needs here the first part
of that proof concerned with the term containing the k-th order spectral density. Note that
this approach generalizes that applied in Sakhno (2007) in the study of second-order spectral
functionals. The main steps of the proof are presented separately for continuous and discrete
cases.

Consider the continuous case (S = Rd). We can rewrite the first term in the formula (14) in
the following form

I1 =
1

(2π)3dH4,T (0)

∫
S3
ϕ (λ1, λ2, λ3)

∫
S3
f4 (λ1 + u1, ..., λ3 + u3)

×
4∏
j=1

H1,T (uj) δ

 4∑
j=1

uj

 du1du2du3dλ1dλ2dλ3, (18)
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where H4,T (0) = T d
(
H̃4 (0)

)d
, H1,T (uj) = T d

∏d
i=1 H̃1

(
Tu

(i)
j

)
, H̃k(u) =

∫
h̃(t)ke−itudt.

Changing the variables Tu
(i)
j = v

(i)
j , we obtain

I1 =
1

(2π)3d
(
H̃4 (0)

)d ∫
S3
ϕ (λ1, λ2, λ3)

∫
S3
f4

(
λ1 +

v1

T
, ..., λ3 +

v3

T

)

×
4∏
j=1

d∏
i=1

H̃1

(
v

(i)
j

)
δ

 4∑
j=1

vj

 dv1dv2dv3dλ1dλ2dλ3.

Since f4 is twice boundedly differentiable, using Taylor’s theorem we can write

f4

(
λ1 +

v1

T
, ..., λ3 +

v3

T

)
=f4 (λ1, λ2, λ3) + const · T−1

3∑
j=1

d∑
i=1

v
(i)
j +O

(
T−2

) 3∑
j=1

d∑
i=1

∣∣∣v(i)
j

∣∣∣2
(uniformly in λ in O-term), correspondingly, for I1 we obtain

I1 =

∫
S3
ϕ (λ1, λ2, λ3) f4 (λ1, λ2, λ3) dλ1dλ2dλ3 +R1 +R2.

The error term R1 is of the form

R1 = const · 1

(2π)3d
(
H̃4 (0)

)d ∫
S3
ϕ (λ1, λ2, λ3)

1

T

3∑
j=1

d∑
i=1

∫
S3
v

(i)
j

×
4∏
j=1

d∏
i=1

H̃1

(
v

(i)
j

)
δ

 4∑
j=1

vj

 dv1dv2dv3dλ1dλ2dλ3,

this reduces to the sum of terms of the form

const · 1

T

∫
S3
ϕ (λ1, λ2, λ3)

∫
R
v

(i)
j H̃1

(
v

(i)
j

)
H̃3

(
−v(i)

j

)
dv

(i)
j dλ1dλ2dλ3,

each of which is equal to zero since H̃1

(
v

(i)
j

)
H̃3

(
−v(i)

j

)
is an even function.

Analogously, R2 reduces to the sum of terms of the following form

const ·
∫
S3
ϕ (λ1, λ2, λ3)

∫
R

∣∣∣v(i)
j

∣∣∣2 H̃1

(
v

(i)
j

)
H̃3

(
−v(i)

j

)
dv

(i)
j dλ1dλ2dλ3, (19)

supplied with multiplier O
(
T−2

)
. Due to Assumption 4 on the taper and integrability of ϕ,

the integrals (19) are bounded, therefore

I1 =

∫
S3
ϕ (λ1, λ2, λ3) f4 (λ1, λ2, λ3) dλ1dλ2dλ3 +O

(
T−2

)
. (20)

Consider now the expression (18) for I1 in the discrete case (S = (−π, π]d). We again use the
Taylor’s theorem for the twice boundedly differentiable function f4 and write∣∣∣∣∣∣f4 (λ1 + u1, ..., λ3 + u3)− f4 (λ1, λ2, λ3)−

3∑
j=1

d∑
i=1

u
(i)
j

∂f4 (λ)

∂λ
(i)
j

∣∣∣∣∣∣ ≤ const ·
3∑
j=1

d∑
i=1

∣∣∣u(i)
j

∣∣∣2 .
Denote

αT = I1 −
∫
S3
ϕ (λ1, λ2, λ3) f4 (λ1, λ2, λ3) dλ1dλ2dλ3.
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Consider the expression

1

(2π)3dH4,T (0)

3∑
j=1

d∑
i=1

∫
S3
ϕ (λ1, λ2, λ3)

∂f4 (λ)

∂λ
(i)
j

∫
S3
u

(i)
j (21)

×
4∏
j=1

d∏
i=1

H̃1,T

(
u

(i)
j

)
δ

 4∑
j=1

uj

 du1du2du3dλ1dλ2dλ3.

The inner integrals in (21) reduce to the expressions{
(2π)(3) H̃4,T (0)

}d−1
(2π)2

∫ π

−π
u

(i)
j H̃1,T

(
u

(i)
j

)
H̃3,T

(
−u(i)

j

)
du

(i)
j ,

and the last integral is equal to zero since H̃1,T

(
u

(i)
j

)
H̃3,T

(
−u(i)

j

)
is an even function. We

conclude that (21) is equal to zero and

|αT | ≤ const ·
3∑
j=1

d∑
i=1

∫
S3
|ϕ (λ1, λ2, λ3)|

[
1

(2π)3dH4,T (0)

∫
S3

∣∣∣u(i)
j

∣∣∣2 (22)

×
4∏
j=1

d∏
i=1

∣∣∣H̃1,T

(
u

(i)
j

)∣∣∣ δ
 4∑
j=1

uj

 du1du2du3

 dλ1dλ2dλ3.

Using the properties of the functions Hk,T , we obtain the bound for the expression in square
brackets in (22):

const · 1

T

∫ π

−π
|u|2

∣∣∣H̃1,T (u) H̃3,T (−u)
∣∣∣ du.

Taking into account that for a Lipschitz-continuous taper h̃(t)∫ π

−π
|u|2

∣∣∣H̃k,T (u)
∣∣∣2 du ≤ 1

T
,

we conclude that each term in the left hand side of (22) is bounded by const · T−2, therefore,
we have for I1 the same asymptotics (20) as in the continuous case.

The terms from the second to the fourth in the formula (14) can be analysed in the similar
manner: we repeat the above steps but taking now the Taylor expansions for the function ϕ.
In such a way we can show that the sum of these terms converges to the second term in the
sum in the l.h.s. of (24) with the same rate O

(
T−2

)
. This completes the proof.

From the expression (24) we conclude that to obtain the estimate for the functional J4(ϕ) we
should subtract from J4,T (ϕ) the estimate for the functinal appearing as the second term in
the sum in the l.h.s. of (24), that is, we need the estimates for the functionals J2(ϕ) given by
(2). To this aim, consider the empirical spectral functional

J2,T (ϕ) =

∫
S2
ϕ(λ1, λ2)I2,T (λ1)I2,T (λ2)dλ1dλ2. (23)

Theorem 2. I. Let the spectral densities f2, f4 and the function ϕ satisfy Assumption 5.
Then as T →∞

EJ2,T (ϕ) → J2 (ϕ) =

∫
S2
ϕ(λ1, λ2)f2(λ1)f2(λ2)dλ1dλ2. (24)

II. Let the taper h̃(t) satisfy Assumption 2 for the case of discrete-parameter fields, and for
the case of continuous-parameter fields let Assumption 3 hold; the spectral density f2 and the
function ϕ satisfy Assumption 7. Then

EJ2,T (ϕ)− J2(ϕ) = O(T−2) as T →∞. (25)
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Proof. Analogously to calculation of EJ4,T (ϕ), we obtain:

EJ2,T (ϕ) =
1

((2π)3dH2,T (0))2

∫
S2
ϕ(λ1, λ2)

{∫
S3
f4(γ1, γ2, γ3)H1,T (γ1 − λ1) (26)

×H1,T (γ2 + λ1)H1,T (γ3 − λ2)H1,T (−
3∑
i=1

γi + λ2)dγ1dγ2dγ3

+

∫
S
f2(γ1)H1,T (γ1 − λ1)H1,T (−γ1 + λ1)dγ1

∫
S
f2(γ2)H1,T (γ2 − λ2)H1,T (−γ2 + λ2)dγ2

+

∫
S
f2(γ1)H1,T (γ1 − λ1)H1,T (−γ1 − λ2)dγ1

∫
S
f2(γ2)H1,T (γ2 + λ1)H1,T (−γ2 + λ2)dγ2

+

∫
S
f2(γ1)H1,T (γ1 − λ1)H1,T (−γ1 + λ2)

×
∫
S
f2(γ2)H1,T (γ2 + λ1)H1,T (−γ2 − λ2)dγ1dγ2

}
dλ1dλ2,

which can be also written in the following form:

CT

[∫
S2
ϕ(λ1, λ2)

∫
S2
f4(γ1, γ2, γ3)Φ4,T (γ1 − λ1, γ2 + λ1, γ3 − λ2)dγ1dγ2dλ1dλ2 (27)

+

∫
S2
ϕ(λ1, λ2)

∫
S2
f2(γ1)f2(γ2)Φ4,T (γ1 − λ1,−γ1 − λ2, γ2 + λ1)dγ1dγ2dλ1dλ2

+

∫
S2
ϕ(λ1, λ2)

∫
S2
f2(γ1)f2(γ2)Φ4,T (γ1 − λ1,−γ1 + λ2, γ2 + λ1)dγ1dγ2dλ1dλ2

]
+

∫
S2
ϕ(λ1, λ2)

∫
S
f2(γ1)Φ2,T (γ1 − λ1)dγ1

∫
S
f2(γ2)Φ2,T (γ2 − λ2)dγ2dλ1dλ2,

where we have denoted

CT = H4,T (0)((2π)dH2,T (0))−2. (28)

Considering (27), taking into account the properties of the kernels Φ2,T and Φ4,T (see (A.2))and
the conditions imposed on the functions ϕ, f2 and f4 in the first part of the theorem, we can
see that the last integral in (27) converges to J2(ϕ) as T → ∞, the expression in the square
brackets converges to the finite limit, but being supplied with the factor CT (which is of order
1
T ) this part of the sum vanishes. To evaluate the rate of convergence of bias for the second
part of the theorem we use the similar reasonings as those in the proof of Theorem 1, we need
to analyze actually only the last term in (27) to obtain the statement.

From Theorem 2 we have an immediate consequence concerning estimation of the functional
Ĵ2(ϕ) given by (3). Consider the functional

Ĵ2,T (ϕ) =
1

2

∫
S
ϕ(λ) (I2,T (λ))2 dλ. (29)

Theorem 3. I. Let the spectral densities f2, f4 and the function ϕ satisfy Assumption 5.
Then as T →∞

EĴ2,T (ϕ) → Ĵ2(ϕ).

II. Let the taper h̃(t) satisfy Assumption 2 for the case of discrete-parameter fields, and for
the case of continuous-parameter fields let Assumption 3 hold; the spectral density f2 and the
function ϕ satisfy Assumption 7. Then

EĴ2,T (ϕ)− Ĵ2(ϕ) = O(T−2) as T →∞. (30)
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Introduce the following empirical functional

Ĵ4,T (ϕ) = J4,T (ϕ)−
∫
S2
I2,T (λ1)I2,T (λ2) (31)

×{ϕ(λ1,−λ1, λ2) + ϕ(λ1, λ2,−λ1) + ϕ(λ1,−λ1, λ2)}dλ1dλ2.

As a straightforward corollary of Theorems 1 and 2 we obtain the next result.

Theorem 4. I. Let the taper, spectral densities f2, f4 and the function ϕ satisfy the assump-
tions of the first parts of Theorems 1 and 2. Then as T →∞

EĴ4,T (ϕ)→ J4 (ϕ) .

II. Let the taper h̃(t), the spectral densities f2, f4 and the function ϕ satisfy the assumptions
of the second parts of Theorems 1 and 2. Then

EĴ4,T (ϕ)− J4(ϕ) = O(T−2) as T →∞. (32)

Remark 1. In the case of observations over the domain DT = [1, T ]d Assumption 1 must be
modified as follows: h̃(t) is a positive measurable function of bounded variation with support
on [0, 1] and h(0) = 0, h(1− v) = h(v) for 0 ≤ v ≤ 1

2 .

Remark 2. Examples of tapers h̃(t) satisfying the assumptions introduced in the discrete
and continuous cases respectively are h̃(t) = 1

2(1+cos(4πt), |t| ≤ 1, and h̃(t) = 1−|t|, |t| ≤ 1.

Remark 3. We considered the case of the taper which factorizes: h (t) =
∏d
i=1 h̃

(
t(i)
)
. This

assumption simplifies calculations and allows to use known results for the one-dimensional
case, namely, upper bounds for spectral windows Hk,T (λ) and their convolution properties
(see, e.g., Dahlhaus (1983)). For such type of tapers we also have that the approximate
identity property of the corresponding Fejér-type kernels Φh

k,T is preserved for dimensions

d>1 (see Appendix). Additional assumptions on tapers help to achieve the rate T−2 for
the convergence of bias to zero, which is important for the spatial data. Note that without
tapering or without some additional conditions on taper one can have only the rate T−1.

Remark 4. The estimate (31) has the advantages over the estimates (8), (10), taken with
k = 4, since we do not have to introduce the restrictions on the domain of integration, and
as a result we obtain the estimate of the functional J4(ϕ) itself. However, for the general k
the form of recursive estimates of this type becomes rather involved. The simple estimate
can be still obtained for k = 5, in which case from the integral of the fifth-order periodogram
we should subtract some combination of the integrals of products of the periodograms of the
second and third orders.

Remark 5. The functional (29) was used to construct the minimum contrast estimators for
stationary processes in Sakhno (2012), in order to extend these estimators for the case of
fields the result on the bias rate stated in Theorem 3 is of importance.

Remark 6. The consistency of the considered spectral estimates can be stated by using
the same approach as in the papers Anh et al. (2004), Anh, Leonenko, and Sakhno (2007a),
Anh et al. (2007b), variance of the estimators can be represented by the integrals involving
the corresponding higher-order Fejér-type kernels, and, in order to apply the approximate
identity property of these kernels, appropriate conditions on spectral densities of up to the
eighth order must be introduced.
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Appendix

We present here some tools needed for the proofs.

Firstly, we note that the following formula for the cumulants of the finite Fourier transform
dhT (λ) , λ ∈ S, can be deduced:

cum
(
dhT (α1) , ..., dhT (αk)

)
=

∫
hT (t1)...hT (tk)e

−iΣk
1(αj ,tj) (A.1)

× cum (X (t1) , ..., X (tk)) ν(dt1)...ν(dtk)

=

∫
Sk−1

fk (γ1, ..., γk−1)

∫
hT (t1)...hT (tk)e

iΣk−1
1 (tj ,γj−αj)

×ei(tk,−Σk−1
j=1 γj−αk)ν(dt1)...ν(dtk) dγ1...dγk−1

=

∫
Sk−1

fk (γ1, ..., γk−1)H1,T (γ1 − α1) ...H1,T (γk−1 − αk−1)

×H1,T

(
−Σk−1

1 γj − αk
)
dγ1...dγk−1,

where H1,T (λ) =
∫
hT (t)e−i(t,λ)ν(dt).

If
∑k

j=1 λj = 0, and Hk,T (0) 6= 0, then

Φh
k,T (λ1, ..., λk−1) =

(
(2π)d(k−1)Hk,T (0)

)−1
k∏
j=1

H1,T (λj)

is a multidimensional kernel of Fejér type over Sk−1, which is an approximate identity for
convolution, and the following equality holds:

lim
T→∞

∫
Sk−1

Φh
k,T (u1, ..., uk−1)G (u1 − v1, ..., uk−1 − vk−1) du1...duk−1 = G(v1, ..., vk−1), (A.2)

provided that the functionG (u1, ..., uk−1) is bounded and continuous at the point (v1, ..., vk−1),
for the case S = [−π, π)d, and is from L1(Sk−1)

⋂
Lk−2(Sk−1) and continuous at the point

(v1, ..., vk−1), for the case S = Rd. In the case under consideration, when the taper factorizes,
and the domain of observation is a cube DT = [−T, T ]d, this fact follows as a straightforward
generalization of the corresponding results stated for dimension d = 1 by Dahlhaus (1983)
(for S = [−π, π)) and Ginovyan and Sahakyan (2019) (for S = R). In the non-tapered case,
when h(t) ≡ 1, this was shown in Bentkus (1972).

For the case when
∑k

j=1 αj = 0, the formula (A.1) leads to the following expressions:(
(2π)d(k−1)Hk,T (0)

)−1
cum

(
dhT (α1) , ..., dhT (αk)

)
=

∫
Sk−1

Φh
k,T (γ1 − α1, ..., γk−1 − αk−1) fk (γ1, ..., γk−1) dγ1...dγk−1

=

∫
Sk−1

Φh
k,T (u1, ..., uk−1) fk (u1 + α1, ..., uk−1 + αk−1) du1...duk−1.
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