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Abstract

Problems of statistical analysis of discrete-valued time series are considered. Two ap-
proaches for construction of parsimonious (small-parametric) models for observed discrete
data are proposed based on high-order Markov chains. Consistent statistical estimators
for parameters of the developed models and some known models, and also statistical tests
on the values of parameters are constructed. Probabilistic properties of the constructed
statistical inferences are given. The developed theory is also applied for statistical analysis
of spatio-temporal data. Theoretical results are illustrated by computer experiments on
real statistical data.

Keywords: discrete time series, high-order Markov chain, parsimonious model, statistical
inferences.

1. Introduction

Time series analysis is deep developed (Anderson 1971) for “continuous” data when the ob-
servation space A is some Euclidean space or its subspace of nonzero Lebesque measure:
A⊆Rm, mes(A) > 0. In practice, however, (because of “digitalization” of our real world) the
statisticians need to use discrete-valued models of time series, when the observation space
A is some discrete set with cardinality N = |A|, mes(A) = 0. Give some applied areas
where discrete-valued time series models are extremely helpful (Weiss 2018): bioinformat-
ics for analysis of genetic sequences (N=4); information systems for information protection
(N = 2); meteorology for weather prediction; social science for modelling of dynamics in so-
cial behavior; public health and personalized medicine; prediction of environmental processes;
financial engineering; telecommunications; alarm systems.

Discrete-valued time series is a random process xt ∈ A on some probability space (Ω,F,P)
with discrete time t ∈ N0 = {0, 1, 2, . . .} and some discrete state space A with the cardi-
nality N = |A|, 2 ≤ N ≤ +∞. Much attention to discrete-valued time series considered as
categorical time series was paid by B. Kedem and K. Fokianos (Kedem and Fokianos 2002).

If A is any countable set (N = +∞), then we have a countable valued time series xt. If A
is any finite set (N < +∞), then we have a finitely valued time series, also called categorical
time series (Kedem and Fokianos 2002). We will consider here these cases both, and, without
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loss of generality, we will assume that A = {0, 1, . . . , N − 1}.
An universal base model for discrete-valued time series xt ∈ A is the homogeneous Markov
chain MC(s) of some order s ∈ N0, determined by the generalized Markov property (t > s):

P{xt=it|xt−1=it−1, . . . , x1=i1}=P{xt=it|xt−1=it−1, . . ., xt−s=it−s}=pit−s,...,it−1,it , (1)

where s is the memory depth; i1, i2, . . . , it ∈ A are values of the process at the time mo-
ments 1, 2, . . . , t respectively; P =

(
pit−s,...,it−1,it

)
is an (s+ 1)-dimensional matrix of one-step

transition probabilities. Number of independent parameters for the MC(s) model increases
exponentially w.r.t. the memory depth s: DMC(s) = N s(N − 1). To identify this model (1)
we need to have huge data set and the computation work of size O

(
N s+1

)
. To avoid this

“curse of dimensionality” we propose to use the parsimonious (“small-parametric”) models of
high-order Markov chains that are determined by small number of parameters d � DMC(s)

(Kharin 2013).

2. Construction of parsimonious high-order Markov chains

According to what has been said in Introduction, the parsimonious high-order Markov chain
is determined by parsimonious representation of the one-step transition probabilities matrix
P defined by (1). Number of independent parameters d of the parsimonious matrix is much
smaller than the total number of independent parameters and is determined by the parsimony
coefficient:

κ ::=
d

DMC(s)
� 1. (2)

In our opinion, there are two main approaches to construction of parsimonious matrix P :
Approach I: squeezing of the set of different values of elements in matrix P ;
Approach II: using of some generation equation for the conditional probability distribu-
tion (1) of the future state xt under its prehistory.

To define Approach I let us introduce some notations: Q=
(
qj1,...,jr,jr+1

)
is some stochastic

(r+1)-dimensional matrix, 1 ≤ r < s,
∑

jr+1∈A
qj1,...,jr,jr+1≡1, 0 ≤ qj1,...,jr,jr+1≤1, j1, . . . , jr+1 ∈

A; B(·) : As → Ar is some discrete function. The (s + 1)-dimensional matrix P is squeezed
to the (r + 1)-dimensional matrix Q by the general transformation:

pi1,...,is,is+1 = qB(i1,...,is),is+1
(3)

with the parsimony coefficient (2) equal to

κ = N r−s < 1. (4)

Illustration of the squeezing approach (3) for the case of N = 2, s = 4, r = 2 is given by
Figure 1 and Figure 2. As it is seen from these figures and from (3), matrix P has many
identical rows (they are marked by identical colors).

Give a list of known parsimonious high-order Markov chains correspondent to Approach I:
Markov chain of order s with r partial connections MC(s, r) (Kharin and Piatlitski 2007),
Markov chain of conditional order MCCO(s, r) (Kharin and Maltsew 2017), variable length
Markov chain (Buhlmann and Wyner 1999).

Approach II to construction of parsimonious high-order Markov chain is based on some
generation equation for the conditional probability distribution of the future state xt ∈ A
under its prehistory Xt−1

t−s = (xt−1, . . . , xt−s)
′:

pi1,...,is,is+1 = qis+1

(
θ(i1, . . . , is; a)

)
, i1, . . . , is+1 ∈ A, (5)

where {qj(θ) : j ∈ A} is some discrete probability distribution on A that is dependent on
the parameter θ = (θj) ∈ Θ ⊆ RL, θ(i1, . . . , is; a) is some parametric function that is a priori
known up to some unknown vector parameter a = (ak) ∈ Rm.
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P =

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1



0 1
q000 | 1− q000
q000 | 1− q000
q010 | 1− q010
q010 | 1− q010
q000 | 1− q000
q000 | 1− q000
q010 | 1− q010
q010 | 1− q010
q100 | 1− q100
q100 | 1− q100
q110 | 1− q110
q110 | 1− q110
q100 | 1− q100
q100 | 1− q100
q110 | 1− q110
q110 | 1− q110



Figure 1: Parsimonious matrix P : N=2, s=4,
r=2, κ=0.25.
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Figure 2: Visualization of the parsimo-
nious matrix from Figure 1.

The parsimony coefficient for this approach is

κ =
m

N s(N − 1)
≤ 1. (6)

List of known parsimonious high-order Markov chains correspondent to Approach II is
longer: Jakobs – Lewis model (Jacobs and Lewis 1978), MTD-model (Raftery 1985), DAR(s)
(Kharin and Maltsew 2017), BCNAR(s) (Kharin, Voloshko, and Medved 2018), BiCNAR(s)
(Kharin and Voloshko 2019), PCNAR(s) (Kharin and Kislach 2019), INAR(s) (Alzaid and
Al-Osch 1990).

3. Statistical analysis for models constructed by Approach I

3.1. Markov chain MC(s, r) of order s with r partial connections

The MC(s, r) proposed by Yu. Kharin in 2004 is determined by the following parsimonious
presentation of the (s+ 1)-dimensional transition probability matrix:

pJs+1
1

= pj1,...,js,js+1 = qj
m0

1
,...,j

m0
r
,js+1 , (7)

where Js+1
1 = (j1, . . . , js+1) ∈ As is the (s + 1)-dimensional index vector; r is the number

of connections (1 ≤ r ≤ s); M0
r =

(
m0

1, . . . ,m
0
r

)
∈ M is some integer-valued vector with

r ordered components, 1 = m0
1 < m0

2 < . . . < m0
r ≤ s, called the template of connections;

Q =
(
qJr+1

1

)
Jr+1
1 ∈Ar+1

is an (r + 1)-dimensional stochastic matrix. If r = s, we have the

general MC(s)-model.

In (Kharin 2013; Kharin and Piatlitski 2007) the following probabilistic properties of the
MC(s, r)-model are found.

Theorem 1. The MC(s, r) defined by (7) is an ergodic Markov chain iff there exists i ∈ N

such that min
Js
1 ,J

2s+i
s+i+1∈As

∑
Js+i
s+1∈Ai

s+i∏
k=1

qj
k+m0

1−1
,...,j

k+m0
r−1

,jk+s
>0. Stationary probability distribution

π∗Js
1

satisfies the equations: π∗
Js+1
2

=
∑
j1∈A

π∗Js
1
qj

m0
1
,...,j

m0
r
,js+1, Js+1

1 ∈ As.
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Corollary 1. For a stationary Markov chain the stationary probability distribution has the
multiplicative form:

π∗Js
1

=
s∏
i=1

π∗ji , Js1 ∈ As, iff π∗jr+1
=
∑
j1∈A

π∗j1qJr+1
1

, Jr+1
2 ∈ Ar.

Introduce the notation: δij is Kronecker symbol; F
(
J i+s−1i ;Mr

)
=(ji+m1−1,..., ji+mr−1) is the

selector-function; Xn
1 = (x1, . . . , xm)′ is the observed time series of length n;

νJr+1
1

(Xn
1 ;Mr) =

n−s∑
t=1

δF(Xt+s−1
t ;Mr),Jr

1
δxt+s,jr+1 (8)

is the frequency statistic for the template Mr ∈ M ; µJr+1
1

(Mr) = P{F
(
Xt+s−1
t ;Mr

)
=

Jr1 , xt+s = jr+1} is the probability distribution of the (r + 1)-tuple; the dot used instead of

any index means summation on all its values: µJr
1•(Mr) =

∑
jr+1∈A

µJr+1
1

(Mr); µ̂Jr+1
1

(Mr) =

νJr+1
1

(Xn
1 ;Mr) /(n−s) is the frequency estimator for the probability µJr+1

1
(Mr), J

r+1
1 ∈ Ar+1,

Mr ∈M .

We have the following results (Kharin and Piatlitski 2007).

Theorem 2. If the template of connections M0
r is known, then the maximum likelihood es-

timator (MLE) for the matrix Q is Q̂ =
(
q̂Jr+1

1

)
Jr+1
1 ∈Ar+1

: q̂Jr+1
1

=
{
µ̂Jr+1

1

(
M0
r

)
/µ̂Jr

1•
(
M0
r

)
, if

µ̂Jr
1•
(
M0
r

)
>0; 1/N else

}
. Under the stationarity condition,

{
q̂Jr+1

1
: Jr+1

1 ∈Ar+1
}

are asymp-

totically (n→∞) unbiased and consistent with covariances

Cov
{
q̂Jr+1

1 ,, q̂Kr+1
1

}
= σq̂

Jr+1
1 ,Kr+1

1

/(n−s)+O(1/n2),

σq̂
Jr+1
1 ,Kr+1

1

= δJr
1 ,K

r
1
qJr+1

1

(
δjr+1,kr+1 − qKr+1

1

)
/µJr

1•
(
M0
r

)
, Jr+1

1 ,Kr+1
1 ∈ Ar+1.

Moreover, the probability distribution of the N r+1-dimensional composed random vector(√
n−s

(
q̂Jr+1

1
−qJr+1

1

))
Jr+1
1 ∈Ar+1

at n→∞ converges to the normal probability distribution

with zero mean and the covariance matrix Σq̂ =
(
σq̂
Jr+1
1 ,Kr+1

1

)
.

The consistent statistical test for hypotheses: H0={Q = Q0}, where Q0=
(
q0
Jr+1
1

)
Jr+1
1 ∈Ar+1

is some given matrix; H1 = H0, consists of the following steps.

1. Computation of the statistics νJr+1
1

(Xn
1 ;M0

r ), Jr+1
1 ∈ Ar+1, by (8).

2. Computation of the statistic
(
DJr

1
=
{
jr+1 ∈ A : q0

Jr+1
1

> 0
})

ρ =
∑

Jr
1∈Ar, jr+1∈DJr

1

νJr
1•(X

n
1 ;M0

r )
(
q̂Jr+1

1
− q0

Jr+1
1

)2
/q0
Jr+1
1

.

3. Computation of the P -value: P = 1−GU (ρ), where GU (·) is the standard χ2- cumulative

distribution function with U =
∑
Jr
1∈Ar

(∣∣DJr
1

∣∣− 1
)

degrees of freedom.

4. The decision rule with an asymptotic significance level ε: if P ≥ ε, then to conclude
that the hypothesis H0 is true; otherwise, the alternative H1 is true.
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Corollary 2. Under stationary MC(s, r) and contigual family of alternatives H1n = {Q =

Q1n}, Q1n =
(
q1n
Jr+1
1

)
Jr+1
1 ∈Ar+1

, q1n
Jr+1
1

= q0
Jr+1
1

(
1 +

dJr+1
1√
n− s

)
,

∑
jr+1∈A

dJr+1
1

q0
Jr+1
1

= 0,∑
Jr+1
1 ∈Ar+1

∣∣∣dJr+1
1

∣∣∣ > 0, if H1n is true, then at n → ∞ the power of the developed test

w → 1 − GU,a (G−1U (1 − ε)), where GU,a(·) is the cumulative distribution function of the
noncentral χ2-distribution with U degrees of freedom and the noncentrality parameter

a =
∑

Jr+1
1 ∈Ar+1

µJr+1
1

(M0
r )d2

Jr+1
1

.

Introduce the notation: M is the set of all admissible templates Mr;

H(Mr) = −
∑

Jr+1
1 ∈Ar+1

µJr+1
1

(Mr) ln
(
µJr+1

1
(Mr)/µJr+1

1 •(Mr)
)
≥ 0 (9)

is the conditional entropy of the future symbol xt+s ∈ A relative to the past derived by the
selector F

(
Xt+s−1
t ; Mr

)
∈ Ar, Mr ∈ M ; Ĥ(Mr) is the “plug-in” estimator of the condi-

tional entropy, which is generated by substitution of the estimators µ̂Jr+1
1

(Mr) instead of true

probabilities µJr+1
1

(Mr) into (9).

Theorem 3. If the order s and the number of connections r are known, then the MLE
M̂r = arg min

Mr∈M
Ĥ(Mr). Under the stationarity condition of the MC(s, r) the estimator M̂r

at n→∞ is consistent: M̂r
P−→M0

r .

Let s ∈ [s−, s+] , r ∈ [r−, r+], 1 ≤ s− < s+ <∞, 1 ≤ r− < r+ < s+. To estimate parameters
r, s we use the Bayesian Information Criterion (BIC):

BIC(s, r) = 2(n− s)Ĥ(M̂r) + U ln(n− s), (10)

where U=
∑
Jr
1∈Ar

(∣∣DJr
1

∣∣− 1 + δµ̂Jr
1•

(M̂r),0

)
, DJr

1
=
{
jr+1∈A : µ̂Jr+1

1
(M̂r) > 0

}
.

Consistent estimators ŝ, r̂ are determined by minimization: BIC(s, r)→ min
s,r

.

3.2. Markov chain of conditional order MCCO(s, L)

Introduce the notation: L ∈ {1, . . . , s−1} is some positive integer, K = NL−1; Q(1), . . . , Q(M)

are M (1 ≤M ≤ K + 1) different square stochastic matrices of the order N :

Q(m) =
(
q
(m)
i,j

)
, 0 ≤ q(m)

i,j ≤ 1,
∑
j∈A

q
(m)
i,j ≡ 1, i, j ∈ A, 1 ≤ m ≤M ;

< Jmn >=

m∑
k=n

Nk−njk ∈ {0, 1, . . . , Nm−n+1 − 1} is the numeric representation of the multiin-

dex Jmn ∈ Am−n+1; I{C} is the indicator function of the event C; 1 ≤ mk ≤M , 1 ≤ bk ≤ s−L,
0 ≤ k ≤ K. It is assumed that sequences {mk} and {bk} are fixed, min

0≤k≤K
bk = 1 and all ele-

ments of the set {1, 2, . . . ,M} are present in the sequence m0, . . . ,mK .

Markov chain {xt ∈ A : t ∈ N} is called (Kharin and Maltsew 2017) the Markov chain of
conditional order (MCCO(s, L)), if its one-step transition probabilities have the following
parsimonious form:

pJs+1
1

=

K∑
k=0

I{< Jss−L+1 >= k}q(mk)
jbk ,js+1

.
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The sequence of elements Jss−L+1 is called the base memory fragment (BMF) of the random
sequence; L is the length of BMF; the value sk = s − bk + 1 is called the conditional order
of Markov chain. Thus the conditional probability distribution of the state xt+1 at time
point t+ 1 depends not on all s previous states, but it depends only on L+ 1 selected states(
jbk , J

s
s−L+1

)
. Note that if L = s − 1, s0 = s1 = . . . = sK = s, we have the full-connected

Markov chain of the order s: MC(s). If M = K + 1, then each transition matrix corresponds
to only one value of the BMF, otherwise there exists a common matrix which corresponds to
several values of BMF.

Hence the transition matrix P of the Markov chain of conditional order is determined by
d = 2(NL + 1) +MN(N − 1) independent elements, and the parsimony coefficient (2) is

κ =
NL +MN(N − 1)

N s(N − 1)
≤1.

Methods and algorithms of statistical analysis for MCCO(s, L) are presented in (Kharin and
Maltsew 2017).

4. Statistical analysis for models constructed by Approach II

4.1. Jacobs - Lewis model

Jacobs – Lewis model is determined by a stochastic difference equation (Jacobs and Lewis
1978) (t > s):

xt = µtxt−ηt + (1− µt)ξt, (11)

where {ξt, ηt, µt} are independent random variables with probability distributions:

P{µt = 1} = 1−P{µt = 0} = ρ; P{ξt = k} = πk, k ∈ A,
∑
k∈A

πk = 1;

P{ηt = i} = λi, i ∈ {1, 2, . . . , s},
s∑
i=1

λi = 1, λs 6= 0. (12)

Number of parameters depends linearly on s: DJL=N+s−1; κ=(N+s−1)/ (N s(N − 1))≤1.

In (Jacobs and Lewis 1978) only moments and stationary distributions were analyzed. We
proved (Kharin 2013) probabilistic and statistical properties of the model (11), (12) by the
MC(s)-model.

Theorem 4. Discrete-valued time series xt determined by (11), (12) is a homogeneous
Markov chain of the order s with the initial probability distribution πi1,...,is = πi1 · . . . · πis
and the (s+ 1)-dimensional matrix of transition probabilities P (π, λ, ρ) =

(
pi1,...,is+1

)
:

pi1,...,is,is+1 = (1− ρ)πis+1 +

s∑
j=1

λjδis−j+1,is+1 , i1, . . . , is+1 ∈ A.

Corollary 3. Maximum likelihood estimators π̂,λ̂,ρ̂ by the data Xn
1 =(x1, . . ., xn)

′ are deter-
mined by the solution of the maximization problem:

l(π, λ, ρ) =

s∑
t=1

lnπxt +

n∑
t=s+1

ln

(1− ρ)πxt + ρ

s∑
j=1

λjδxt−j ,xt

→ max
π,λ,ρ

.

Using these MLEs we had constructed (Kharin 2013) the consistent generalized probability
ratio test for hypotheses on the true values of parameters ρ, λ, π in (12) as in Subsection 3.1.
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4.2. Raftery model

Mixture Transition Distribution-model (MTD-model) was proposed by A. Raftery (Raftery
1985) as a special parsimonious representation of the matrix P :

pi1,...,is,is+1 =
s∑
j=1

λjqij ,is+1 , i1, . . . , is+1 ∈ A, (13)

where Q = (qi,k) is a stochastic (N × N)-matrix, 0 ≤ qi,k ≤ 1,
∑
k∈A

qi,k ≡ 1, i, k ∈ A,

λ = (λ1, . . . , λs)
′ is a discrete probability distribution, λ1 > 0.

The MTDg (generalized MTD)-model is:

pi1,...,is,is+1 =
s∑
j=1

λjq
(j)
is−j+1,is+1

, i1, . . . , is+1 ∈ A, (14)

where Q(j) =
(
q
(j)
i,k

)
is a stochastic matrix for the j-th lag.

Number of parameters for the MTDg: DMTDg=s(N(N−1)/2+1)−1; κ=O(s ·N2−s).

We have constructed a simple criterion for the ergodicity of the MTD-model and found a
useful property of the stationary probability distribution (Kharin 2013).

Theorem 5. For the MTDg-model (14), if ∃K ∈ N :
((
Q(1)

)K)
ij
> 0, ∀i, j ∈ A, then the

s-dimensional stationary probability distribution satisfies the equation (i1, . . ., is∈A):

π∗i1,...,is =
s−1∏
l=0

π∗is−l +
s∑

j=l+1

λj

(
q
(j)
ij−l,is−l

−
N−1∑
r=0

q
(j)
r,is−l

π∗r

) .

Corollary 4. For the ergodic MTD-model (13) the 2-dimensional stationary probability dis-
tribution of the random vector (xt−m, xt)

′ is π∗ki(m) = π∗kπ
∗
i + π∗kλs−m+1(qki − π∗i ), i, k ∈ A,

1 ≤ m ≤ s.

Based on Corollary 4 we construct statistical estimators λ̃, Q̃ by an observed time series
Xn

1 = (x1, . . . , xn)′ of the length n:

π̃i =
1

n− 2s+ 1

n−s+1∑
t=s+1

δxt,i; π̃ki(j) =
1

n− 2s+ 1

n−s+j∑
t=s+j

δxt−j ,kδxt,i;

zki(j)=π̃ki(s− j)/π̃k−π̃i, dki=q̃ki − π̃i, i, k∈A; λ̃j=
∑
i,k∈A

zki(s− j)dki/
∑
i,k∈A

d2ki, j=1, . . ., s;

q̃ki =


s∑
j=1

π̃ki(j)/π̃k − (s− 1)π̃i, if π̃k > 0; N−1 else

 . (15)

Theorem 6. For the ergodic MTD-model (13) the estimators Q̃, λ̃ determined by (15) at
n→∞ are consistent and asymptotically unbiased.

MLE Q̂, λ̂ are solutions of the nonlinear maximization problem:

l(Q,λ) =
n∑

t=s+1

ln
s∑
j=1

λjqxt−s+j−1,xt → max
Q,λ

. (16)

The estimators Q̃, λ̃ are used as initial values in the iterative computation of the MLEs Q̂,
λ̂ in (16). Generalized probability ratio test of the asymptotic size ε ∈ (0, 1) for H0 = {Q =
Q0, λ = λ0}, H1 = H0 is constructed as in the Subsection 3.1.
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4.3. Binomial conditionally nonlinear autoregressive model BiCNAR(s)

This model (Kharin and Voloshko 2019) is determined by the special (binomial) case of
equation (5):

pi1,...,is,is+1 = C
is+1

N−1θ
is+1(1− θ)N−1−is+1 , is+1 ∈ A = {0, 1, . . . , N − 1}, (17)

θ = θ (Is1) = F
(
a′Ψ (Is1)

)
, Is1 = (i1, . . . , is)

′ ∈ As.

Here Ψ (Is1) =
(
ψ1 (Is1) , . . . , ψm (Is1)

)′
: As → Rm is a column-vector of m ≤ N s linearly inde-

pendent functions, e.g. polynomials, F(·): R1 → [0, 1] is some fixed cumulative distribution
function, e.g. logistic, normal or Cauchy:

Λ(ζ) =
1

1 + e−ζ
, Φ(ζ) =

1√
2π

ζ∫
−∞

e−
x2

2 dx, C(ζ) =
1

2
+

arctan(ζ)

π
, ζ ∈ R1,

a = (a1, . . . , am)′ is a column-vector of m unknown model parameters. Parsimony coefficient

for this model κ = m
(
N s(N − 1)

)−1 ≤ 1.

Introduce the notation: F−1(·) is the quantile function; XT
1 = (x1, . . . , xT )′ ∈ AT is the

observed time series of length T ;

θ̂(J) =
1

N − 1
·

T∑
t=s+1

xtI{Xt−1
t−s = J}

T∑
t=s+1

I{Xt−1
t−s = J}

, J ∈ As;

B = (bJ) is (N s× 1) – vector-column, bJ = F−1(θ̂(J)); H = (hJ,J ′) is some fixed (N s×N s) –
symmetrical non-negatively defined matrix; Ψ = (Ψ(J)) is (m×N s) matrix; Om is the zero
m-vector.

Theorem 7. If F(·) satisfies the smoothness assumptions: 0<F(ζ)<1, 0<F′(ζ)< +∞, F(·)
and F−1(·) are twice differentiable, and |ΨHΨ′|6=0, then the Frequencies Based Estimator
(FBE)

â = (ΨHΨ′)−1ΨHB (18)

is consistent and asymptotically normal at T → +∞:

â
P→ a,

√
T (â− a)

D→ Nm(Om,ΣH),

ΣH = (ΨHΨ′)−1ΨHJ−1H(ΨHΨ′)−1,

where J is the Fisher information matrix.

Corollary 5. For the weight matrix H = J the FBE (18) is asymptotically efficient (it attains
the Cramer – Rao boundary at T → +∞).

Proofs of Theorem 7 and its corollary are given in (Kharin and Voloshko 2019).

FBE (17) has the following significant advantages w.r.t. the MLE: 1) explicit expression of
FBE w.r.t. the iterative computation of MLE; 2) fast iterative computation of FBE if we
extend the basis {ψi(·)}; 3) possibility to control the computational complexity of FBE by
variation of the matrix H.

Note in conclusion, that the developed method of FBE construction for the BiCNAR is suc-
cessively used for some other models of discrete-valued time series (Kharin and Kislach 2019):
semibinomial, Poisson, geometric, negative binomial conditionally nonlinear autoregressive
time series.
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4.4. Binomial conditionally nonlinear model for spatio-temporal data

We extend the BiCNAR model determined in the previous subsection for the case of spatio-
temporal data (Dauhaliova and Kharin 2018). Introduce the notation: s ∈ S = {1, 2, . . . , n}
is the index variable that determines the geographic region (site); n is the number of geo-
graphical regions to be analyzed; xg,t ∈ A is the discrete random observation at time moment
t ∈ N0 at the site g ∈ G; Xt = (x1,t, . . . , xn,t)

′ ∈ An is the column-vector of all n observations
for all sites at time moment t; Zg,t = (z1,g,t, . . . , zm,g,t)

′ ∈ Rm is the column-vector of m
exogenous variables at time moment t for the site g ∈ G. It is assumed that under fixed pre-
history {X1, . . . , Xt−1}: a) the random variables xt,1, . . . , xt,n are conditionally independent;
b)conditional probability distribution of xg,t is binomial:

P{xg,t = l|Xt−1, . . . , X1} = C lN−1 · plg,t · (1− pg,t)N−1−l, l ∈ A; (19)

c) parameter ps,t is determined by special case of generation equation (5):

ln
pg,t

1− pg,t
=

s∑
k=1

n∑
i=1

agkixi,t−k +

m∑
j=1

bg,jzj,g,t, g ∈ G, t ∈ N0, (20)

where ag = {agki} ⊂ Rm, bg = (bg,1, . . . , bs,m) ∈ Rm are parameters of this model.

The proposed model (19), (20) determines the parsimonious nonhomogeneous n-dimensional
Markov chain of order s with parsimony coefficient:

κ =
n(sN +m)

Nns(Nn − 1)
.

We constructed the consistent and asymptotically normal MLEs for parameters {ag}, {bg} of
the model (19), (20) and numerical procedure for its evaluation in (Kharin and Zhurak 2015;
Dauhaliova and Kharin 2018).

Note in conclusion, that in (Kharin and Zhurak 2015) we have developed the Poisson condi-
tionally nonlinear model for spatio-temporal count data.

5. Application of the developed algorithms in data analysis

All algorithms developed in Sections 2-4 were tested on simulated data and illustrated their
accordance with the proved theoretical properties. Here we give some results of computer
experiments with the developed algorithms on real data from applications. We present here
three examples.

5.1. Modeling of wind direction

The discrete-valued time series of the daily average wind speed at Malin Head (North of
Ireland) during the period 1961 – 1978 (Jacobs and Lewis 1978) xt ∈ {0, 1, 2}, N = 3, of
the length T = 6574 was fitted by the MC(s, r)-model for s = {1, 2, . . . , 7}, r = {1, 2, . . . , 7}.
Table 1 presents the values of the BIC for different pairs (s, r).

The best fitted model is the MC(3,2) with M̂r = (1, 3) and the transposed matrix

Q̂′ =

 0.27 0.08 0 0.22 0.04 0 0.21 0.02 0
0.73 0.86 0.63 0.78 0.82 0.52 0.79 0.72 0.43

0 0.06 0.37 0 0.14 0.48 0 0.26 0.57

 .

The fitted model MC(3, 2) detects significant stochastic dependencies in this data.
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Table 1: Modelling of the wind speed data

Model BIC Model BIC Model BIC Model BIC
MC(1,1) 8127.52 MC(4,2) 8139.12 MC(5,5) 8621.97 MC(7,1) 9041.43
MC(2,1) 8777.63 MC(4,3) 8164.79 MC(6,1) 9016.23 MC(7,2) 8163.07
MC(2,2) 8096.08 MC(4,4) 8332.77 MC(6,2) 8148.48 MC(7,3) 8197.91
MC(3,1) 8849.90 MC(5,1) 8984.10 MC(6,3) 8190.78 MC(7,4) 8323.19
MC(3,2) 8079.81 MC(5,2) 8129.83 MC(6,4) 8350.82 MC(7,5) 8599.09
MC(3,3) 8143.13 MC(5,3) 8177.92 MC(6,5) 8576.92 MC(7,6) 8973.15
MC(4,1) 8956.11 MC(5,4) 8349.62 MC(6,6) 8969.54 MC(7,7) 9575.64

5.2. Analysis of CG-patterns in genome

We took the complete Panthera tigris mitochondrion genome of the length T = 16990 (avail-
able from NCBI Nucleotide data base, ID EF551003.1) and extracted the binary sequence xt
of its CG-indicators: xt = 1 iff the t’th nucleotide is Guanine or Cytosine, t = 1, . . . , T . Por-
tion of ”1” in XT

1 is known as CG-content and plays important role in bioinformatics (Kharin
et al. 2018).

In order to evaluate individual and pairwise impact of the lagged variables Xt−1
t−s on xt we

fitted the BCNAR(s)-model (up to s = 15) for N = 2 with the bilinear bases {ψi(·)} and the
Gaussian c.d.f. Φ(·).
Two fitted BCNAR-models for s = 10; 15 respectively, are (ζt = (−1)xt):

P{xt|xt−1, . . .} = Φ(−0.3962 + 0.0313ζt−1 + 0.0241ζt−3 + 0.033ζt−10+

+0.045ζt−3ζt−6 − 0.0576ζt−3ζt−10),

P{xt|xt−1, . . .} = Φ(−0.1319 + 0.022ζt−1 + 0.0269ζt−6 + 0.0248ζt−15−

−0.0434ζt−6ζt−15),

(21)

that are adequate according to BIC. It is seen that in the two fitted models (21) of high orders
s = 10 and s = 15 the future state xt is significantly influenced by the past states xt−i lagged
by multiples of three (i = 3j), and even the closest predecessor xt−1 has a weaker impact on xt.
Note also that the pairs of the lagged variables in these two models are more influential than
the single lagged variables, i.e. the bilinear basis catched some essential high-order statistical
dependencies invisible to the linear one. These identified properties of the bilinear models
confirm the known in genetics effect of statistical 3-periodicity of protein-coding fragments
(Kharin et al. 2018); this fact indicates the usefulness of the developed theory for statistical
analysis of genetic sequences.

5.3. Dynamics analysis for the incidence rate of children leukemia

Real medical data describes the incidence rate of children leukemia in n = 3 cites of Belarus
for T = 25 years after Chernobyl (normalization of the data was made by the number of
residents at the group of risk). We used the Poisson conditionally nonlinear autoregressive
spatio-temporal model (Kharin and Zhurak 2015).

Statistical estimators of the parameters obtained by T = 25 observations:

θ̂1 = (−0.06, 0.15)′, θ̂2 = (−0.01, −0.02, 1.51)′, θ̂3 = (0.07, 0.05, 0.82)′, (22)

determine the models for dynamics of incidence rate, e.g. for the site number s = 3 the
estimator of expected incidence rate (parameter of the Poisson distribution) is

λ̂3,t = exp(0.07x3,t−1 · I{t > 1}+ 0.05x2,t + 0.82). (23)

Forecasting results by the fitted models are presented in Figures 3-5.
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Figure 3: Forecasting results for the site
s=1.

Figure 4: Forecasting results for the site
s = 2.

Figure 5: Forecasting results for the site s = 3.

6. Conclusion

Methods and software for time series analysis is deep developed for ”continuous” data, and
these techniques are not (or risky) applicable to discrete-valued time series xt ∈ A with
discrete state space A.

An universal model for discrete-valued time series with bounded memory length s∈N is the
Markov chain of sufficiently large order s, but computational complexity of its fitting by data
increases exponentially w.r.t. s: O(|A|s+1).

To avoid this ”curse of dimensionality” we need to construct parsimonious (small-parametric
models). We propose two approaches to develop parsimonious models of high-order Markov
chains: 1) squeezing of the set of different values for transition probabilities; 2) using of
generation equation for transition probabilities.

The proposed approaches are considered for six parsimonious models.

Developed algorithms of computer data analysis are illustrated in three applications on real
data.

Finally, we plan to develop the results of this paper in three main directions: 1) robust
statistical analysis of discrete-valued time series based on asymptotical risk expansion methods
published in (Kharin 1997, 2011; Kharin and Zhuk 1998); 2) robust sequential testing of
hypotheses for discrete-valued time series using approaches from (Kharin 2017; Kharin and
Kishylau 2015; Kharin and Tu 2017); 3) applications in steganography (Kharin and Vecherko
2013) and in marketing (Pashkevich and Kharin 2004).
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