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Abstract

In this paper, we consider the mean residual life (MRL) function of the Cantor dis-
tribution and study its properties. We show that the MRL function is continuous at all
points, locally decreasing at all points outside the Cantor set and has a unique fixed point
which we explicitly determine. These properties readily extend to the parametric family of
p-singular, Cantor type distributions introduced by Mandelbrot (1983). The findings offer
evidence that, contrary to common perceptions, Cantor-type distributions are tractable
enough to be considered for practical applications. We provide such an example from the
field of economics in which Cantor-type distributions can be used to model markets with
recurrent bandwagon effects and show that earlier anticipated bandwagon effects lead to
higher monopolistic prices. We conclude with a simple implementation of the algorithm
by Chalice (1991) to plot Cantor-type distributions.

Keywords: Cantor distribution, mean residual life function, decreasing generalized mean resid-
ual life function, fixed points, bandwagon effects.

1. Introduction

Theoretical study of complex social and economic phenomena entails a trade-off between
tractability and robustness of the model to perturbations of its working assumptions. This
trade-off is particularly evident in the study of decision making under uncertainty: to optimize
the outcome of their actions, economic agents and social planners need to accurately reason
about parameters for which they only have scarce information at the time of the decision,
such as economic growth or retail demand. In many cases, the quest for simplicity (and hence,
tractability) of the selected theoretical model leads to the adoption of simplifying assumptions
which in turn, compromise the robustness of the resulting decision rules in practice.

In this context, singular distributions, although naturally emerging even in low-dimensional
economic settings Machina and Pratt (1997); Mitra, Montrucchio, and Privileggi (2004);
Mitra and Privileggi (2006), are typically avoided due to their perceived intractability. While
the use of absolutely continuous distributions may deliver accurate predictions in multiple
settings, see e.g., Lariviere (2006); Banciu and Mirchandani (2013), in other cases, the lack
of accuracy in the modelling of uncertainty leads to conservative pricing strategies due to the
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consideration of worst-case scenarios or more generally to significantly suboptimal decisions
Bergemann and Schlag (2011); Cohen, Perakis, and Pindyck (2016).

In the present paper, motivated by the recurrent theme of monopoly pricing under demand
uncertainty in markets with linear stochastic demand, we study the properties of the mean
residual life (MRL) function m (x) , x ∈ [0, 1] of the Cantor distribution (cf. equation (1)).
This setting complements a larger study that is presented in Leonardos and Melolidakis
(2018) in which we derive mild sufficient conditions on the demand distribution — or more
accurately on the seller’s belief about the demand — that ensure a unique optimal price.
The resulting class of distributions is particularly inclusive since it only requires that the
cumulative distribution function (CDF) F (x) is continuous, that the distribution has finite
second moment and that the term m (x) /x is decreasing. Optimal prices correspond to
fixed points of the MRL function and these conditions are enough to ensure existence and
uniqueness of a fixed point.

Interestingly, some mild regularity conditions — continuity of the CDF and finiteness of mo-
ments — are also satisfied by the singular Cantor distribution Dovgoshey, Martio, Ryazanov,
and Vuorinen (2006). This provides an incentive to test the applicability of our derived pricing
rule under minimum possible assumptions. Specifically, if we only require that the CDF F (x)
is continuous over a finite interval, while m (x) /x may not be decreasing, then can we still
have existence of a unique optimal price, i.e., of a unique fixed point of the MRL function?
The present paper addresses precisely this question and establishes that this indeed true in
the context of the Cantor distribution. More specifically, our findings are the following.

• We leverage a result of Dovgoshey et al. (2006) to show that the MRL function of the
Cantor distribution is continuous at all points and locally decreasing at all points outside
the Cantor set. We then proceed to show that this implies the existence of a unique fixed
point of the MRL function, i.e., of a unique solution to the equation m (x) = x, x ∈ [0, 1],
which we explicitly determine at x = 5/12. These findings are formalized in Theorem 2.1.

• We then consider a parametric family of p-singular Cantor-type distributions originally
discussed by Mandelbrot (1983) and Chalice (1991). We show that Theorem 2.1 readily
extends to the case of arbitrary p > 0 and provide a closed form expression for the unique
fixed point in [0, 1] of any such distribution, cf. Theorem 3.1. We complement our results
with illustrations of the cumulative distribution functions and MRL functions of the Cantor-
type distributions for various values of p > 0 and provide an (simple) implementation in
Matlab R2019b of the algorithm originally suggested by Chalice (1991) to reproduce the
illustrations.

While the above findings provide an affirmative answer to the robustness of our derived pricing
rule — i.e., that existence and uniqueness of a fixed point of the MRL function may occur
even under the minimum possible assumption of continuity of the CDF over a closed interval
— they leave an integral question unanswered: are there realistic economic settings which can
be modelled via Cantor-type distributions? Perhaps surprisingly, the answer to this question
is affirmative.

Apart from the natural emergence of Cantor type attractors in supply and demand mod-
els and models of economic growth Onozaki, Sieg, and Yokoo (2000); Mitra and Privileggi
(2006) and Onozaki (2018), the exact shape of the MRL functions, cf. Figure 1 and Figures 2
and 3, conveys to Cantor-type distributions an interesting property in the context of mod-
elling demand uncertainty. Specifically, the kind of non-monotonic behavior that they exhibit
may be leveraged to model markets with positive demand shocks that are expected to occur
whenever the demand reaches or exceeds some threshold or equivalently bandwagon effects,
i.e., situations in which demand leads to more demand Van Herpen, Pieters, and Zeelenberg
(2009). Such shocks may be due to successful introduction of the product to new market seg-
ments following its success in its currently operating markets or adoption of the product by
new groups of consumers following its increased visibility via its current consumers. Beyond
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product or service consumption, bandwagon effects are also widespread in social and political
phenomena that include voting preferences and diffusion of ideas Barnfield (2019).

To demonstrate the potential use of the parametric family of p-singular Cantor-type distri-
butions in the modelling and study of this kind of markets, we present an application —
monopoly pricing under demand uncertainty. Based on the shape of the MRL function, the
p parameter can be seen to control the location and intensity of the positive demand shocks.
The existence of a unique fixed point of the MRL function leads to a unique optimal price
described by the closed form expression in Theorem 3.1 and provides useful insight about
monopolistic pricing in such markets. In particular, anticipation of bandwagon effects for
lower demand values leads to higher monopolistic prices which in turn, are known to produce
negative effects on consumer and social welfare.

In a nutshell, while our results may be of independent theoretical interest in the study of
singular distributions, they also suggest that singular distributions can be more useful than
commonly perceived in the modelling and study of social and economic phenomena.

2. The mean residual life function of the Cantor distribution

For C0 = [0, 1] and Cn = Cn−1

3 ∪
(
2
3 + Cn−1

3

)
for n ≥ 1, the Cantor set C is defined as

C :=
⋂∞

n=1Cn. The Cantor distribution is defined as the distribution that is uniform on the
Cantor set (Gut 2013). Let F denote its cumulative distribution function and let X ∼ F
denote a random variable with distribution F . F is continuous at every x ∈ [0, 1] and
F ′ (x) = 0 almost everywhere which means that F is a continuous singular distribution.
Also, let

m (x) :=

E (X − x | X > x) =
1

F̄ (x)

∫ 1

x
F̄ (u) du, if x < 1

0, otherwise

(1)

denote the mean residual life (MRL) function of X (Shaked and Shanthikumar 2007; Lai and
Xie 2006). Fixed points of the MRL function, i.e., solutions of the equation m (x) = x, are
related to optimal solutions of optimization problems, cf. Application 4.1. When studying
solutions of the fixed point equation, it is sometimes useful to study directly the function
m (x) /x. To that end, let ` (x) := m (x) /x, for 0 < x < 1, denote the generalized mean
residual life (GMRL) function of X (Leonardos and Melolidakis 2018). Since X is non-
negative, we have that m (0) = EX = 1/2, see e.g., Gut (2013). X has the decreasing mean
residual life (DMRL) property, if m (x) is non-increasing for x < 1 and similarly, X has the
decreasing generalized mean residual life (DGMRL) property, if ` (x) is non-increasing for
x < 1. Finally, we will say that a continuous function f : (0, 1) → R is locally monotone at
x ∈ (0, 1) if there is an open neighborhood U of x such that f |U is monotone.

Theorem 2.1. Let m (x) for x ∈ [0, 1] denote the MRL function of the Cantor distribution.
Then

(i) m (x) is continuous with m (x) = 1
F (1−x)

∫ 1−x
0 F (u) du, for all x ∈ [0, 1],

(ii) both m (x) and ` (x) are locally decreasing at a point x ∈ (0, 1) if and only if x ∈ [0, 1]\C.
(iii) the unique solution of the fixed point equation m (x) = x in [0, 1] is x∗ = 5

12 .

The statements of Theorem 2.1 are illustrated graphically in Figure 1.

Proof of Theorem 2.1. Using that F̄ (x) = F (1− x), for all x ∈ [0, 1], see, e.g., Chalice (1991),
and by a change of variable in the integration, we obtain (i):

m (x) =
1

F̄ (x)

∫ 1

x
F̄ (u) du =

1

F (1− x)

∫ 1

x
F (1− u) du =

1

F (1− x)

∫ 1−x

0
F (u) du
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Figure 1: Cantor distribution: the left panel shows the MRL function m (x) and the right
panel shows the GMRL function ` (x) = m (x) /x for values away from 0 where the GMRL
grows to infinity. The unique fixed point of m (x) at x∗ = 5/12 is shown in both panels

The continuity of m (x) is immediate, since m (x) is the quotient of two continuous functions
(with the denominator being throughout non-zero) with limx→1−m (x) = 0 by Hall and
Wellner (1981), Proposition 2(d). Statement (ii) follows from Theorem 3.7 of Dovgoshey
et al. (2006) on f (x) := 1

F (1−x) and φ (x) :=
∫ 1−x
0 F (u) du. Indeed, f : (0, 1) → [0,+∞) is

increasing and continuous and φ : (0, 1)→ [0,+∞) is strictly decreasing with finite derivative
φ′ (x) at every x ∈ (0, 1). The set of constancy of f , Lf , is given by Lf = [0, 1] \ C and has
Lebesgue measure 1. Hence, by the above Theorem, the product fφ is locally decreasing at
a point x ∈ (0, 1) if and only if x ∈ Lf . Since m (x) = f (x)φ (x), the result follows. Taking

φ (x) := 1
x

∫ 1−x
0 F (u) du, establishes the result for ` (x). Statement (iii) of Theorem 2.1 can

be derived by applying Lemma A.1–(i) on 0 ≤ y ≤ 1/3 and Lemma A.1–(ii) on 2/3 ≤ y < 1.
Specifically, using the symmetry of F , it is a straightforward calculation to verify the values
of m (x) in the following steps:

step 1: for y = 0, δ = 1/4, since m (0) = E (α) = 1/2, we get m (x)−x > 0 for all 0 ≤ x < 1/4.

step 2: for y = 20
81 , δ = 343

3564 , since m (20/81) = 29
66 , we get m (x)−x > 0 for all 20

81 ≤ x <
1223
3564 .

Combining steps 1. and 2., we obtain that m (x)−x > 0 for all x ∈ [0, 1/3]. For x ∈ [1/3, 2/3],
we write x = 1/3 + t with 0 ≤ t ≤ 1/3 and by Lemma A.1–(iii)

m (1/3 + t) = m (1/3)− t =
1

F (2/3)

∫ 2/3

0
F (u) du = 1/2− t.

Hence, the fixed point equation m (1/3 + t) = 1/3 + t for 0 ≤ t ≤ 1/3 is equivalent to
1/2 − t = 1/3 + t and therefore its only solution is given by t = 1/12. This shows that
x∗ = 1/3 + 1/12 = 5/12 is the only solution of the fixed point equation x∗ = m (x∗) in
[1/3, 2/3]. For 2/3 < x < 1 we apply Lemma A.1–(ii) for y = 1− ε with ε > 0 arbitrary and
δ = 1/3, which gives that for all 2/3 < x < 1 − ε, m (x) − x < m (1− ε) − 1 + 2 · (1/3) =
m (1− ε)− (1/3) < 0, since limx→1−m (x) = 0. Since ε > 0 was arbitrary this concludes the
proof of Theorem 2.1–(iii).

The tractability of the Cantor distribution mainly stems from the continuity of its cumula-
tive distribution function which is inherited by its MRL function. Based on Theorem 2.1,
the Cantor distribution does not satisfy the DMRL nor the DGMRL property, yet its MRL
function has a unique fixed point.
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3. Extension: parametric family of Cantor-type distributions

Chalice (1991) studies the parametric family of p-singular Cantor-type random variables Xp

for p > 0 with cumulative distribution functions Fp characterised as the unique real-valued,
monotone increasing functions that satisfy the conditions

(i) Fp (x/3) = Fp (x) / (p+ 1), for x ∈ [0, 1],

(ii) Fp (1− x) = 1− pFp (x), for x ∈ [0, 1/3].

Referring to a discussion by Mandelbrot (1983), Chalice (1991) notes that the corresponding
probability measures are invariant under the inverted V transformation. In the defining
conditions, he also requires that Fp (0) = 0 which follows directly from (i). Moreover, from (i)
and (ii) it follows that Fp (1/3) = Fp (2/3) = 1/ (p+ 1) and hence, that Fp (x) = 1/ (p+ 1)
(due to monotonicity) for all x ∈ [1/3, 2/3]. Accordingly, condition (ii) extends to any x ∈
[0, 2/3]. The Cantor distribution is the unique real valued, monotone increasing function
that corresponds to p = 1, in which case condition (ii) holds for any x ∈ [0, 1], cf. proof of
Theorem 2.1.

In this section, we show that the statements of Theorem 2.1 readily generalize to any p > 0.
In particular, the MRL function mp (x) of any p-singular Cantor type distribution has a
unique fixed point which can be explicitly calculated as a function of p. Such fixed points are
decreasing in p and lie within (3/8, 1/2) with the lower and upper limits approximated for
p→ +∞ and p→ 0+ respectively. These findings are formalized in Theorem 3.1.

Theorem 3.1. Let Fp (x) and mp (x) for x ∈ [0, 1] denote the cumulative distribution function
(CDF) and mean residual life (MRL) function, respectively, of the p-singular Cantor-type
random variable Xp. Then, for each p > 0 it holds that

(i) E[Xp] = 3
2 ·

p
2p+1 ,

(ii) mp (x) and `p (x) are continuous on [0, 1] and locally decreasing at a point x ∈ (0, 1) if
and only if x ∈ [0, 1] \ C, and

(iii) the fixed point equation mp (x) = x has a unique solution x∗p in [0, 1] given by

x∗p =
1

6
+

5p+ 4

12 (2p+ 1)
. (2)

In particular, the fixed point x∗p is decreasing in p and takes values in (3/8, 1/2).

Remark 3.2. The proof of Theorem 3.1 follows the proof of Theorem 2.1 and is deferred to
Appendix A.2. For p = 1, equation (2) recovers the result of Theorem 2.1, namely that
x∗1 = 5/12.

Chalice (1991) presents a simple algorithm to plot the CD and MRL functions of the p-
singular Cantor type distributions. Based on a simple implementation of this algorithm in
Matlab R2019 which allows for multiple iterations before reaching memory capacity, we have
produced the following plots of the CD and MRL functions for various values of p ∈ (0, 1) and
p ∈ (0,+∞) in Figures 2 and 3, respectively. The algorithm can be found in Appendix A.3.
The MRL plot for p = 0.01, cf. Figure 2, and for lower values of p not depicted here, indicates
that a second fixed point may occur at x = 1/3 in the limit as p → 0+. However, since
mp (1/3) = 5p+4

6(2p+1) > 1/3 for any p > 0 (cf. proof of Theorem 3.1 in Appendix A.2), x∗p
remains the unique fixed point in the whole [0, 1] interval for any p > 0.

4. An application: pricing in markets with bandwagon effects

The above derived properties of the MRL functions — their local monotonicity and the
uniqueness of a fixed point — render Cantor-type distributions more relevant for practical
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Figure 2: Cumulative distribution functions Fp (x) (left column) and mean residual life func-
tions mp (x) with highlight of the single fixed point (right column) of the parametric family of
p-singular distributions for various values of p < 1. The unique fixed point is decreasing in p
and takes values close to 0.5 for values of p approximating 0+. The plots have been produced
using 1000 initial points and 17 iterations of the algorithm of Chalice (1991) as described in
Appendix A.3

applications than generally thought. In the context of modelling demand uncertainty, the
MRL function describes the mean residual demand for each demand level Leonardos and
Melolidakis (2018).

The shape of the MRL function of p-singular Cantor distributions, cf. Figures 2 and 3, can be
utilized to model markets with recurrent bandwagon effects Van Herpen et al. (2009); Barnfield
(2019). Such markets are characterized by positive demand shocks whenever demand reaches
(or exceeds) some threshold. For instance, if a product is adopted by a certain number of
consumers (e.g., a cluster in the population), then the expected residual demand may increase
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Figure 3: Cumulative distribution functions Fp (x) and mean residual life functions mp (x) of
the parametric family of p-singular with highlight of the single fixed point (right column) of
the parametric family of p-singular distributions for various values of p > 1. The unique fixed
point is decreasing in p and takes values close to 0.375 for values of p approximating +∞.
The plots have been produced using 1000 initial points and 17 iterations of the algorithm of
Chalice (1991) as described in Appendix A.3

due to increased visibility of the product which attracts more consumers. The illustrations
in Figures 2 and 3 indicate that the location and intensity of these effects — that correspond
to continuous jumps of the MRL function (the visible discontinuities in the plots are due to
the finite number of executions of the plotting algorithm) — are calibrated by the selection
of parameter p: lower values of p correspond to more intense effects that appear at lower
demand values, whereas larger values of p smoothen the effects and move them towards the
upper end of possible demand values. The original Cantor distribution, p = 1, corresponds
to a symmetric case, cf. Figure 1.



72 Mean Residual Life of Cantor-Type Distributions

From the perspective of a monopolistic seller who is facing a market with this kind of effects,
the unique fixed point of the MRL function of Cantor-type distributions turns out to be
particularly useful in the design of a unique optimal pricing policy. In turn, and from a
theoretical perspective, a unique optimal price allows for accurate predictions and meaningful
comparative statics analysis (study of the response of the optimal price to market parameters).
The details of modelling such an application are given in Application 4.1 (see Leonardos and
Melolidakis (2018) for the general statement of this problem).

Application 4.1. A seller is selling goods to a market with linear demand q (x) = X − x
where x denotes the price, q (x) the quantity that is demanded at price x and X the demand
level. X is uncertain at the time of the sellers’ pricing decision and distributed according to
a p-singular Cantor-type distribution with CDF Fp. Parameter p is selected according to the
intensity and location of the anticipated positive demand shocks (bandwagon effects). The
seller is concerned to determine the optimal price x∗ that will maximize their expected payoff
Π (x) := xE (X − x)+ where (X − x)+ is the positive part of (X − x), i.e., (X − x)+ = X−x
if X ≥ x and is 0 otherwise. As shown in Leonardos and Melolidakis (2018), the set of
optimal prices coincides with the set of fixed points of the MRL function, i.e., any optimal
price x∗ satisfies m (x∗) = x∗. By Theorem 3.1-(iii), x∗p is unique for any p > 0 and equal to

x∗p = 1
6 + 5p+4

12(2p+1) . Since x∗p is decreasing in p, the seller charges a higher price in a market
with earlier anticipated bandwagon effects, i.e., bandwagon effects that occur at lower demand
level. Hence, the expectation of such effects has an adverse impact on both consumer and
social welfare which are known to diminish as prices increase.

5. Conclusions

In this paper, we studied the mean residual life (MRL) functions of the Cantor and the p-
singular, Cantor-type distributions as defined by Mandelbrot (1983) and Chalice (1991) and
showed that for any p > 0, the MRL function is continuous, locally decreasing at all points
outside the Cantor sets and has a unique fixed point which can be explicitly determined
as a decreasing function of parameter p. Putting these findings in the context of a larger
study on optimal pricing with demand uncertainty, cf. Leonardos and Melolidakis (2018), we
provided an application to indicate that these patterns and properties of the MRL functions
may render Cantor-type distributions useful in the modelling of uncertain demand in markets
with bandwagon effects. Parameter p calibrates the intensity and location of the effects, i.e.,
the demand threshold at which the positive demand shocks occur, whereas the unique fixed
point of the MRL function corresponds to a monopolistic seller’s optimal price. Accordingly,
monopolistic prices are higher in markets with earlier anticipated and more intense bandwagon
effects, cf. Figures 2 and 3, since such markets correspond to lower values of p.

In addition to their independent theoretical interest, these findings offer evidence that singular
distributions are more tractable than commonly thought and suggest that they may be used
in the context of economic modelling to accurately capture real-life economic markets.
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A. Appendix

A.1. Omitted materials: Section 2

The proof of statement (iii) of Theorem 2.1 relies on Lemma A.1. Lemma A.1 does not make
explicit use of the properties of the Cantor distribution and holds for arbitrary distributions
with continuous cumulative distribution function on [0, 1].

Lemma A.1. Let y ∈ [0, 1], then

(i) m (x)− x > m (y)− y − 2δ, for all x ∈ [0, 1] and δ > 0 such that y ≤ x < y + δ,
(ii) m (x)− x < m (y)− y + 2δ, for all x ∈ [0, 1] and δ > 0 such that y − δ < x ≤ y.

(iii) If F is constant on [y, y + δ] ⊂ [0, 1], then m (y + t) = m (y)− t, for all 0 ≤ t ≤ δ.

Proof. For statement (i) let y ∈ [0, 1), δ > 0 and y ≤ x < y + δ. Then, by the monotonicity
of F

m (x) =
1

1− F (x)

∫ 1

x
(1− F (u)) du ≥ 1

1− F (y)

(∫ 1

y
(1− F (u)) du−

∫ y

x
1− F (u) du

)
= m (y)− 1

1− F (y)

∫ x

y
(1− F (u)) du ≥ m (y)− (x− y) (3)

Since x < y+δ, (3) implies that m (x) > m (y)−δ and hence, that m (x)−x > m (y)−x−δ >
m (y) − y − 2δ. Statement (ii) follows similarly. For statement (iii), it suffices to write
x = y + t and observe that (3) now holds throughout with equality due to F being constant
on [y, y + δ].

Lemma A.1-(iii) provides an alternative proof to the “if part” of Theorem 2.1-(ii) since the
cumulative distribution function F of the Cantor distribution is piecewise constant on [0, 1]\C.

A.2. Omitted materials: Section 3

Proof of Theorem 3.1. Let p > 0. To prove statement (i) of Theorem 3.1, we need to estimate
the integral

∫ 1
0 Fp (u) du. Using property (i) in the definition of the p-singular distributions

and by a change of variables in the integration, we obtain that∫ 1

0
Fp (u) du =

∫ 1

0
(p+ 1)Fp (u/3) du = 3 (p+ 1)

∫ 1/3

0
Fp (u) du .

By a change of variables and using property (ii) of the definition, we further obtain that∫ 1

2/3
Fp (u) =

∫ 1/3

0
Fp (1− u) du =

∫ 1/3

0
1− Fp (u) du =

1

3
− p

∫ 1/3

0
Fp (u) du .

To proceed, let I1 :=
∫ 1/3
0 Fp (u) du. Then, since Fp (x) = 1

p+1 for any x ∈ [1/3, 2/3] by
definition, we combine the previous two equations to obtain

3 (p+ 1) I1 = I1 +
1

3
· 1

p+ 1
+

1

3
− pI1

http://dx.doi.org/10.1016/j.jcps.2009.01.001
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which yields that

I1 =
1

6
· p+ 2

(p+ 1)(2p+ 1)

Hence,

E[Xp] =

∫ 1

0
(1− Fp (u)) du = 1− 3 (p+ 1) I1 =

3

2
· p

2p+ 1
.

Statement (ii) follows in the same manner as in the proof of Theorem 2.1 by noting that the
p-transformation affects neither the x-axis (hence, the interval of constancy of Fp remains
the same) nor the continuity of F . To prove statement (iii), let x ∈ [1/3, 2/3]. Then, by
Lemma A.1-(iii), it holds that mp (x) = mp (1/3)− (x− 1/3), with

mp (1/3) =
1

1− Fp (1/3)

∫ 1

1/3
(1− Fp (u)) du

=
1

1− 1
p+1

(∫ 1

1/3
du−

∫ 2/3

1/3

1

p+ 1
du−

∫ 1

2/3
Fp (u) du

)

=
p+ 1

p

(
2

3
− 1

3 (p+ 1)
− 1

3
+ pI1

)
=

5p+ 4

6 (2p+ 1)

where in the last step, we used that I1 = 1
6 ·

p+2
(p+1)(2p+1) . Hence, the fixed point equation

mp (x) = x on x ∈ [1/3, 2/3] can be equivalently written as

mp (1/3)− (x− 1/3) = x

which, by substitution of the derived value of mp (1/3) yields the fixed point x∗p

5p+ 4

6 (2p+ 1)
+

1

3
= 2x∗p ⇐⇒ x∗p =

1

6
+

5p+ 4

12 (2p+ 1)
.

To establish uniqueness, we again apply Lemma A.1-(ii) at y = 1 − ε for ε > 0 arbitrary (as
in the proof of Theorem 2.1) which yields that mp (x) < x for any x ∈ (1/2, 1], i.e., that there
exists no fixed point in (1/2, 1]. To establish that mp (x) > x for all x ∈ [0, 1/3), we start
with y = 0 and mp (0) = E[Xp] and again repeatedly apply Lemma A.1-(i) (however, this
case becomes numerically more complex as p → 0.). Finally, as mentioned in Remark 3.2,
mp (1/3) = 5p+4

6(2p+1) > 1/3 for all p > 0, which shows that there is no fixed point at x = 1/3
for any p > 0 and concludes the proof.

A.3. Algorithm implementation

In this section, we present the main part of the algorithm that we used to produce Figure 1
and Figures 2 and 3. The algorithm is due to Chalice (1991) and the proposed implementation
utilizes the routine unique of Matlab 2019b to avoid an explicit recursion (although the points
at the x- and y-axes are partially recalculated in every iteration) which results in a very simple
implementation shown in the first frame (function cantor_cdf_mrl). The algorithm starts
with the following initialization

I. F (x) = 1/2 on the interval [1/3, 2/3] and F (0) = 0, F (1) = 1.

and then repeats the following steps at each stage

R1. shrinks the x axis by a factor of 1/3,
R2. shrinks the y axis by a factor of 1/(p+ 1),
R3. flips the resultant graph across the line x = 1/2, and then again across the line y =

1/ (p+ 1).
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For the parametric family of p-singular Cantor-type distributions, the x-axis transformations
remain the same for all values of p. The MRL and GMRL functions are then constructed by
standard calculations.

Obviously, to speed up the for loop, one may remove the redundant step of keeping x and F
at every iteration. This would be indeed sufficient to plot the CDF. However, to obtain the
MRL function one would need to store the entire vector of values and this would again increase
the computational burden (or memory requirement) of the for loop. For completeness, one
option to implement the iteration without the redundant calculations is presented in the
second frame (function cantor_cdf).

1 function cantor_cdf_mrl
2

3 % Initialize
4 p=1; %p-singular distributions with p=1 for the Cantor distribution
5 density=500; %customize number of initial points
6 iterations=20; %customize number of iterations of the algorithm
7 x=[0 linspace(1/3,2/3,density) 1]; %initial points at the x-axis
8 F=[0 linspace(1/(p+1),1/(p+1),density) 1]; %initial values of the cdf at ...

the y-axis.
9

10 for k=1:iterations
11 %x-axis: shrink the x-axis by 1/3, flip the result across the x=1/2 ...

line and remove duplicate points for faster implementation. This ...
step is not affected by the selection of p.

12 [x, ia]=unique([x/3 x 1-x/3]);
13 %y-axis: shrink the y-axis by 1/p+1 and flip across the line y=1/(p+1) ...

(1/2 for the standard Cantor distribution).
14 F=[F/(p+1) F 1-F*(p/(p+1))];
15 F=F(ia); %index values according to the duplicate free vector x.
16 end
17

18 plot(x,F,'.', 'MarkerSize', 3) %Use plot instead of scatter(x,F) for ...
faster implementation.

1 function cantor_cdf
2

3 % Initialize as above
4 ...
5 figure;
6 hold all
7 for k=1:iterations
8 plot(x, F, '.');
9 x=[x*u, 1-x*u];

10 F=[F*v, 1-p*v*F];
11 end
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