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Abstract

Clustering in spatial data is very common phenomena in various fields such as disease
mapping, ecology, environmental science and so on. Analysis of spatially clustered data
should be different from conventional analysis of spatial data because of the nature of
clusters in the data. Because it is expected that the observations of same cluster are
more similar than the observations from different clusters. In this study, a method has
been proposed for the analysis of spatially clustered areal data based on generalized es-
timating equations which were originally developed for analyzing longitudinal data. The
performance of the model for known clusters is tested in terms of how well it estimates
the regression parameters and how well it captures the true spatial process. These results
are presented and compared with the conditional auto-regressive model which is the most
frequently used spatial model. In the simulation study, the proposed generalized estimat-
ing equations approach yields better results than the popular conditional auto-regressive
model from the both perspectives of parameter estimation and spatial process captur-
ing. A real life data on the vitamin A supplement coverage among postpartum women
in Bangladesh is then analyzed for demonstration of the method. The existing divisional
clustering behavior of vitamin A supplement coverage in Bangladesh is identified more
accurately by the proposed approach than that by the conditional auto-regressive model.
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1. Introduction

In general, most development indicators of any country are measured and reported at national
scale. Although limited attention to urban versus rural differences is apparent, local-area
variations have not been paid so much attention to. For monitoring and evaluation purpose,
planners often require regionally disaggregated indicators. These, too, are expected to be
smoothed for the spatial effect because geographic or administrative regions are, in reality,
not independent of its nearest neighbors. Although spatial thinking and the use of regionally
disaggregated data in the geological and physical sciences have grown rapidly, their implemen-
tation in the development research has lagged. Spatial statistical analysis, in recent years, has
become very popular due to a rapid development of current knowledge regarding innovations
in geospatial data, spatial statistical methods, the integration of data and models and the
advances in technology.
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Spatial data come as a realization of a stochastic process where the index parameter is space.
The statistical methods that are used to analyze spatial data compose the branch spatial
statistics. They are different according to the three types of spatial data: geo-statistical or
point referenced data, areal or lattice data and point pattern data. For modeling areal data,
conditional auto-regressive (CAR) and simultaneous auto-regressive (SAR) are two popular
models. In terms of estimation and interpretation of model parameters, CAR is preferred
over SAR model, and it also gives minimum mean square prediction error (Cressie 1993).
CAR model analyzes the data assuming conditional dependence between observations that is
observation of a given site is dependent only on the observations of its neighboring sites.

Spatially clustered data, defined by Knox (1989) as ‘a geographically bounded group of occur-
rences of sufficient size and concentration to be unlikely to have occurred by chance, is a very
common feature in real life research related to disease mapping, ecology, socio-demographic
study and many other disciplines. Often such clusters have high degree of similarity of the
observation within cluster and low similarity between clusters. Spatial clustering in the data
plays an important role in exploratory data analysis and building statistical models (Jacquez
2008). These kind of analysis is a regular necessity in policy level of any country where
regional and sub-regional planning are in place. For example, Bangladesh, has seven admin-
istrative divisions and each of the divisions are subdivided into number of districts giving 64
districts in total in the whole country (note that recently the number of divisions is increased
to eight, but neither the shape file nor the socio-demographic characteristics are available at
the new division levels). Almost all policy level interventions regarding development, educa-
tion and health are executed at the division levels and they are re-distributed to the districts
within the divisions. The development indicators of the districts are, therefore, presumed to
be spatially clustered. For spatially clustered data, clusters are independent whereas in CAR
model the independence between clusters is not ensured. As a result, the expected prediction
of CAR in the border of two clusters will be misleading because there are some observations
in the data which are not actually dependent on their neighbors. But CAR model takes their
neighborhood into consideration as they are adjacent to each other, therefore, addresses the
spatial auto-correlation between them. Lawson and Denison (2002) noted that by nature
spatial clusters are not representative of the entire study region. Therefore it is inappropriate
to assume a stationary covariance structure for entire study region. As a result, it seems
reasonable to think that the CAR model may fail to capture the true spatial process of a
spatial clustered data, and may give an inaccurate prediction for modifiable areal unit.

Generalized estimating equations (GEE) is an approach to model correlated data in longitu-
dinal study. It is an extension of generalized linear model (GLM) first introduced by Liang
and Zeger (1986). In longitudinal study, the responses are measured repeatedly over time.
The GEE allows a correlation structure among the responses. In GEE, the data set is split
into some clusters with correlation within clusters, while correlations between clusters are
assumed to be zero. In the estimation method, the within cluster correlation is dealt with
by assuming a working correlation structure. In GEE literature, there exist different kind
of working correlation structures such as exchangeable, auto-regressive of order one, toeplitz,
unstructured etc. Inappropriate choice of correlation structure in GEE will lead to inefficient
parameter estimation (Hin and Wang 2009). Therefore, to apply GEE on spatial data, we
need to choose an appropriate working correlation structure compatible with spatial autocor-
relation. Spatial auto-correlation is defined by the ‘first law of geography’ that ‘neighboring
regions are likely to be more correlated than the distant regions’ i.e. correlation between two
regions decreases with the increase of distance. But none of the working correlation struc-
tures usually used for GEE (exchangeable, autoregressive etc.) relates or fits to this above
kind of spatial auto correlation. That clearly indicates that application of GEE to spatially
clustered data for estimation purpose would need working correlation structure appropriate
for the spatially clustered data.

There is only a few studies that actually used GEE to analyze spatial data. It was first devel-
oped by Albert and McShane (1995). The author proposed the approach for modeling spatial
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location and subject specific covariates. The GEE was applied concentrating on the marginal
mean structure, treating the spatial correlation as nuisance. The goal was to make inference
about marginal mean in the presence of spatial correlation. They used semivariogram model
for characterizing the correlation structure spatial data sets. Following the first application
several authors applied GEE in spatial data (Gotway and Stroup 1997; Gumpertz, Pye et al.
2000; Augustin, Kublin, Metzler, Meierjohann, and von Wühlisch 2005). In these studies,
authors applied GEE on geostatistical data and for small sample size considering the whole
study region as one cluster. Clustering of the data is neither naturally present nor artificially
imposed in these studies. For large data, computation will be very difficult assuming the
whole study region as one cluster. Carl and Kühn (2007) first tested the performance of GEE
method for data of regular gridded maps and large sample size. F Dormann, M McPherson,
B Araújo, Bivand, Bolliger, Carl, G Davies, Hirzel, Jetz, Daniel Kissling et al. (2007) con-
ducted a review study of the methods of accounting spatial auto-correlation where GEE was
used in the same way as Carl and Kühn (2007) on regular lattice. They used GEE method
by considering the entire area as one cluster and making up artificial clusters combining only
a few grid cells. The clusters are made arbitrarily by their developed function. The function
made clusters of different sizes such as: 2×2, 3×3 and 4×4 clusters. Maximum cluster size
can not exceed 4×4. Therefore, the potentially existing correlations among sites which belong
to different clusters are neglected. Furthermore, cluster size can be more than 4× 4 grid cells,
which is not supported by the function.

The main goal of this study is to apply GEE as a method of modeling areal data. In our
study, we will apply GEE on spatially clustered data for estimation of regression parameters.
In addition, a working correlation structure appropriate for the spatially clustered data will
be suggested and hence a revised process that is assumed to be a better representation of
the true process than the observed process is shown using the GEE approach to describe
how well our model is capturing the true process. Simulated spatial map describing these
revised estimates will be compared with that describing the true process and also with the
most popular spatial smoothing method, the conditional auto-regressive (CAR) model. The
methodology will be demonstrated for an example data of district wise vitamin A supplement
coverage among postpartum women in Bangladesh.

2. The proposed approach

The proposed approach for applying GEE on spatially clustered data will utilize the theo-
ries of conditional auto-regressive model (CAR) (Besag 1974) and the generalized estimating
equations (GEE) (Liang and Zeger 1986) which are briefly given in the following two sections.

2.1. Conditional auto-regressive model

Consider n non-overlapping sub-areas S1, S2, . . . , Sn of study region S ⊂ R2 that are spatially
proximate and which are linked to a corresponding set of response Y1, Y2, . . . , Yn. Then
S = {S1, . . . , Sn} defines a spatial lattice. Let yi denote the realization of the response in the
i-th sub-area, i = 1, 2, · · · , n. Under the spatial set up, the distribution of the response Yi of
the i-th sub-area is thought to be dependent on the realizations of the j-th (j 6= i) sub-area,
hence the conditional distribution of the response Yi given yj , j 6= i is of interest. Statistical
analysis with such kind of data is done under a set of assumptions. The CAR model assumes
that this conditional distribution can capture the spatial dependence by defining it through
neighborhood structure of the sub-areas. We denote by W = {wij} the matrix that defines
the neighborhood relationship between sub-area Si and Sj , which can be defined by any of
the methods such as common boundary, distance based method etc. A traditional method is
to consider wij as an indicator variable taking value 1 if Si and Sj share a common boundary
and 0 otherwise. For continuous type of data, a wide-spread assumption is the Gaussian or
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the auto normal assumption which states that

Yi|yj , j 6= i ∼ N

∑
j

bijyj , τ
2
i

 , (1)

Further it can be extended for spatial covariate such as for each sites the variable of interest
Yi and a set of p < n explanatory variables xi = (xi1, ..., xip)

′ are observed. The effect of these
covariates on the Yi i.e. large scale effect of the spatial model is a vector β = (β1, β2, ..., βp)

′.

Yi|yj , j 6= i ∼ N

x′iβ +
∑
j

bij(yj − x′jβ), τ2i

 , (2)

with parameters bij and τ2i . If the joint distribution of Y1, Y2, . . . , Yn can be determined from
equation (1), we call it a Markov Random Field. This can be obtained through Brook’s
Lemma as

p(y1, y2, . . . , yn) ∝ exp
{
−1

2
y′D−1(I−B)y

}
, (3)

where B = {bij ; i, j = 1, 2, . . . , n} and D is diagonal matrix with Dii = τ2i . If D−1(I−B)
is ensured to be symmetric, equation (3) suggests a multivariate normal distribution for Y
with mean By and variance matrix Σy = (I−B)−1D. While B is not symmetric, we set
bij = wij/wi+ and τ2i = τ2/wi+, where wi+ =

∑
j=1wij to make Σy symmetric. Thus,

equations (1) and (3) yield

p(y1, y2, . . . , yn) ∼ N(
∑
j

wijyj/wi+, τ
2
i /wi+) , (4)

and

p(y1, y2, . . . , yn) ∝ exp{− 1

2τ2
y′(Dw −W)y} , (5)

where Dw is diagonal with (Dw)ii = wi+ . From the definition of Dw and W, it is noticed
that (Dw −W)1 = 0, which implies Σ−1y is singular and the distribution in (5) is improper.
This improperness in (5) can be remedied by redefining Σ−1y = (Dw−ρW) and choosing ρ to
make Σ−1y non-singular. Under Σ−1y = (Dw−ρW), the full conditional p(yi|yj ; j 6= i) becomes
N(ρ

∑
j wijyj/wi+, τ

2
i /wi+). The breadth of spatial association is limited for a proper CAR

model (Banerjee, Carlin, and Gelfand 2014).For the model defined in (2), CAR model can be
written as,

Y = BY + Xβ + ε . (6)

If the joint distribution is proper then Y ∼ N
(
By + Xβ, (I−B)

−1
D
)

which induces the

distribution of ε ∼ N (0,D(I−B)′).

2.2. Generalized estimating equations

Let, in a set up of longitudinal data analysis, yij and xij denote the response and the p × 1
vector of covariates, respectively, at the j-th time for the i-th subject (i = 1, 2,. . . , N, and
j = 1, 2,. . .ni). The marginal model for the response yij requires specifying marginal mean
µij = E(Yij |xij) and variance by a generalized linear model as

g(µij) = x′ijβ (7)

and

var(Yij) = φv(µij) , (8)
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where β = (β1, β2, . . . , βp)
′ is the vector of regression coefficients corresponding to the vector

of covariates xi = {xi1, xi2, . . . , xip}, g(·) is the link function, v is a known variance function,
and φ is the scale parameter. Thus the covariance matrix of the response is specified as

Vi = cov(Yi) = φAi
1/2RAi

1/2 , (9)

where, Ai is a ni × ni diagonal matrix with elements var(Yij) = φv(µij) as the j-th diagonal
element, Ri(α) is the correlation matrix among the outcomes measured at different times
for the i-th subject and α is a q-dimensional vector of unknown parameters that completely
specifies within subject correlation. By the generalized estimating equations (GEE) approach,
estimate of the vector of regression coefficients β is obtained by solving the following equations

N∑
i=1

D′iV
−1
i (yi − µi) = 0, (10)

where µi = (µi1, µi2, . . . , µini)
′ is the marginal mean vector for the subject i and Di = δµi

δβ .
According to Liang and Zeger (1986), the estimation of β requires specifying the structure of
the working correlation matrix Ri(α). Here, the variance-covariance matrix in equation (10)
has block diagonal form, since responses of different subjects are assumed to be uncorrelated.
If the parameters in R are not known, it will be necessary to estimate all of them in an iterative
procedure until convergence is achieved. In addition the standard errors of the estimates are
computed using the usual sandwitch estimator.

2.3. GEE in case of areal data

Consider a spatial lattice S = {Sij ; i = 1, 2, . . . , n; j = 1, 2, . . . ,mi} in presence of spatial
clustering, where {Sij ; j = 1, 2, . . . ,mi} constitutes the i-th cluster and Sij is the j-th
sub-area in the i-th cluster. We assume that sub-areas have high degree of similarity of
the observation within cluster and low similarity between clusters. In such setup, we can
utilize the GEE approach described in Section 2.2 by considering each of the clusters as
individual subject and the sub-area within each cluster as correlated responses of the cluster.
The estimation of regression parameter in GEE requires to define the mean model and the
structure of working correlation matrix. This paper would consider the situation of continuous
data only, hence the form of link function is identity. In spatial context, we define correlation
structure for i-th cluster as

Ri =
{

exp(−λ̂i × di(jk)) ; j, k = 1, 2, . . . ,mi

}
, (11)

where di(jk) is the Euclidean distance between centers of sites j and k within i-th cluster and

λ̂i is a scale function controlling the decay of the dependence of spatial auto-correlation on the
distance between units in i-th cluster. Use of the scale parameter λi in the above correlation
structure is intended to encompass different level of spatial heterogeneity among the units of
the i-th cluster. This study assumes that the random variables associated with areal units in
the same cluster are positively correlated and the first order Moran’s I for the i-th cluster is
used as an estimate of λi. There are two components in the error of a spatial data. One is
spatial effect and another is the random noise. Here variance of Yi is decomposed as

cov(Yi) = cov(νi) + var(εi),

where cov(νi) is the variance of spatial effect which contains covariance term because νi is
spatially correlated and var(εi) is a diagonal matrix containing variance of random noise in
the i-th cluster. cov(νi) can be defined as

cov(νi) = A
1
2
i RiA

1
2
i ,
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where Ai is a ni×ni diagonal matrix which contains var(νij) as the jth diagonal element and
Ri is the correlation matrix among the units of the i-th cluster which is defined in equation
(11). Now, cov(Yi) is defined as

Vi = cov(Yi) = cov(νi) + var(εi)

= A
1
2
i RiA

1
2
i + σ2eIni

. (12)

As the estimating equations in equation (10) require an estimate of Vi, this approach utilized
the idea of analysis of variance. Here, Ai is estimated by the residual variance of the analysis of
variance of Y with cluster as factor because units within a cluster are correlated but between
clusters the units are independent and σ2e is estimated by the between cluster variance of Yi.
Finally, regression parameters are estimated by solving equations (10) with estimated Vi.

2.4. Mapping of the fitted value

Estimated residuals ei = yi −Xiβ̂ from GEE model are correlated because it contains both
the spatial effect and the random error term. To extract spatial effect from ei we will use
the residual analysis techniques of longitudinal analysis. We will de-correlate the residuals to
get the error term. This can be done by Cholesky decomposition. Given an estimate of the
covariance matrix for the residuals, V̂i, the Cholesky decomposition is defined as

V̂i = LiL
′
i,

where Li is a lower triangular matrix. The residuals are made uncorrelated by

ε̂i = Li
−1

ei = Li
−1
(
yi −Xiβ̂

)
. (13)

The estimate of the random noise is given by ε̂i in equation (13). Spatial effect is estimated
by ν̂i = ei − ε̂i. Finally, the fitted value for the model is calculated by ŷi = Xiβ̂ + ν̂i.

3. Simulation study

To assess the performance of our proposed model of the GEE approach for estimating the
regression parameter β in equation (7) in case of spatial clustering in data, we conducted a
Monte Carlo simulation. Since, in presence of spatial effect, it is almost an obvious choice to
use CAR model, we compared the results of GEE approach with those obtained using simple
CAR model for the same data.

We have generated artificial data and in order to ensure the generated data to be spatially
correlated, we used the procedure described by Dormann (2007). It was also taken under
consideration of the simulation to make the generated data having a spatial clustering. The
analysis is conducted in R (R Core Team 2017).

The simulation was conducted under a hypothetical spatial scenario of administrative seg-
mentation of Bangladesh. Bangladesh is divided into seven administrative divisions, each of
them are also sub-divided into a number of upazillas (sub-areas). All together, there are 458
upzillas in Bangladesh and they are distributed in the 7 divisions as in Table 1.

As a result, our generated dataset represents a hypothetical data collected from 458 upzillas
of Bangladesh. On this lattice, the artificial data yij (i = 1, 2, . . . , 7; j = 1, 2, . . . ,mi), were
generated as a function of a single predictor xij which was generated from standard uniform
distribution.

In the functional relationship between yij and xij as described in Section 2.2, a spatial auto-
correlation was introduced as spatially correlated errors.
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Table 1: Number of Upazillas in each of the 7 divisions of Bangladesh

Division i Number of
Upazillas (mi)

Barisal 1 37
Chittagong 2 85
Dhaka 3 119
Khulna 4 58
Rajshahi 5 66
Rangpur 6 58
Sylhet 7 35

A weight matrix W was used to convert the random noise to spatially correlated errors νi
using weights according to the distance between data points. Let D = {dij} be the (Euclidean)
distance matrix for the distances between upzillas i and j. Then W = {wij} is calculated by

wij =

{
exp(−λ× dij) , if i-th and j-th upazillas are in the same cluster
0, Otherwise ,

(14)

where λ(λ ≥ 0) determines the decline of inter-cell correlations in error with increasing inter-
upzilla distance. Clearly, the strength of spatial auto-correlation at a given distance increases
as the value of λ decreases. Since, the generated data are needed to be spatially clustered
in 7 clusters (divisions), the weight matrix W is constructed as a block diagonal matrix
with seven blocks. This W matrix makes the random noise spatially correlated within each
division and independent between the divisions. The vector of independent errors, drawn from
the standard normal distribution, was multiplied by Φ, the Cholesky decomposition of W
(W = Φ′Φ). By this procedure correlated errors νi = {νij ; j = 1, 2, . . . ,mi} are generated.
This correlated error introduce spatial autocorrelation in our generated data. Further, to
introduce an unstructured variation in data an unstructured noise εi = {εij ; j = 1, 2, . . . ,mi}
drawn from a normal distribution with mean 0 and standard deviation 10 is also used in
generating yi = {yij ; j = 1, 2, . . . ,mi}. Finally, yij is simulated as

yij = 80− 0.015× xij + 10× νij + εij ; i = 1, 2, . . . , 7; j = 1, 2, . . . ,mi .

4. Results of simulation study

To account for different level of spatial correlation, different values 0.05 to 0.55 in steps 0.05, of
λ were considered for the simulation. For each scenario, 1000 simulated data were generated
under the setup given in section 3. Estimates of the model parameters were obtained using
our proposed method and CAR model for each of the randomly generated data sets.

Table 2 presents the efficiency of parameter estimates for 1000 simulations, each with 458
upazillas. Results are shown for averaged estimates of regression parameter, standard error,
bias, root mean square error and coverage probability for the two methods, our proposed one
and the CAR model .

From Table 2, it is observed that on average GEE approach yields better estimates than its
counterpart irrespective of the values of λ. Looking at the values of SE(β1), it is seen that
the efficiency of the estimated parameter is lower for CAR model relative to that observed for
the proposed method. The same conclusion is suggested by the values of root mean square
error of the estimated parameter. Investigating the values of the coverage probability of 95%
confidence interval, it is found that the coverage probabilities are not much different for the
two methods when the extent of within cluster spatial association is high. In addition, with
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Table 2: Mean, standard errors, bias, root mean square error and coverage probability of 95%

confidence interval obtained in case slope parameter β1 from 1000 simulated datasets

Method SE(β̂1) Bias(β̂1) RMSE(β̂1) Coverage(%)

λ = 0.05 GEE 0.00194 0.00016 0.00194 97.2

CAR 0.00204 0.00039 0.00208 95.3

λ = 0.1 GEE 0.00194 0.00018 0.00195 95.9

CAR 0.002044 0.000420 0.002086 95.3

λ = 0.15 GEE 0.00195 0.00018 0.00196 95.3

CAR 0.002046 0.000432 0.002091 95.3

λ = 0.2 GEE 0.00195 0.00017 0.00196 94.9

CAR 0.002048 0.000433 0.002093 95.5

λ = 0.25 GEE 0.00196 0.00015 0.00196 94.3

CAR 0.002049 0.000426 0.002092 95.7

λ = 0.3 GEE 0.00196 0.00014 0.00197 93.6

CAR 0.002049 0.000412 0.002090 95.9

λ = 0.35 GEE 0.00196 0.00012 0.00197 92.9

CAR 0.002050 0.000394 0.002087 96.1

λ = 0.4 GEE 0.00197 0.00010 0.00197 92.5

CAR 0.002050 0.000371 0.002084 96.3

λ = 0.45 GEE 0.00197 0.00008 0.00197 91.3

CAR 0.002050 0.000346 0.002079 96.5

λ = 0.5 GEE 0.00197 0.00006 0.00198 91.4

CAR 0.002050 0.000318 0.002075 96.5

λ = 0.55 GEE 0.00198 0.00003 0.00198 90.9

CAR 0.00205 0.00028 0.00207 96.7

True parameter value β1 = -0.015
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decrease in within cluster spatial auto-correlation, lesser coverage is observed in case of the
proposed GEE approach while the coverage for CAR method is seen to be higher than the
nominal level of 95%. However, Results obtained also indicate that, if the scale of dependence
of spatial association on the distance between two areal units is small, then the proposed
model outperforms the CAR. It is also observed that when the scale of dependence of spatial
association on the distance increases the proposed method can give deviated results. This
finding reveals that the proposed GEE approach would perform better in case of high level of
spatial clustering in data. This is apparently due to the reason that, in case of strong within
cluster spatial auto-correlation, the clustering pattern will be captured better by the equation
(11), while CAR would consider both the within cluster neighbouring units and the bordering
between cluster neighbouring units as equally auto-correlated.

To check whether the proposed approach adequately fits the true data and also to check
how well the spatial clustering is captured by the proposed method, we produced choropleth
maps of the fitted processes obtained through proposed GEE approach and CAR model for
different values of λ. For a comparative understanding on the goodness of fit of each of the
approaches, scatter plots of true process versus fitted process are also produced for each values
of λ considered in the study. The choropleth maps are shown in Figures 1 through Figure
3. In each of the figures, maps for the true process, fitted process by the GEE approach and
fitted process by the CAR model are shown along with the scatter plot of true versus fitted
process for each of the methods.

From Figure 1, we can observe that the map for the true process evidently shows spatial
clustering, but the map of fitted values obtained from CAR model does not show such clus-
tering. The CAR model being a neighborhood dependent smoothing technique, smooths out
the process over the whole area, thus, fails to retain clustering pattern of the true process.
Unequivocally, it is noticeable that the fitted process by the proposed GEE approach incor-
porating the scaled-distance based correlation structure does not ignore the clustered pattern
of the original data, and therefore, captured the true process better than CAR does. Similar
observations can be made from the maps produced in Figures 1 through Figure 3 for other
λ values. This indicates that proposed GEE approach performs better in spatial prediction
than CAR model while data are spatially clustered no matter what the scale of dependence
of spatial auto-correlation on distance between units is.

Scatter plots of true spatial effect and estimated spatial effect for both model for different
λ are shown in graphs (d) of Figures 1 to Figure 3. It is expected that if the used method
predicts spatial effect perfectly then the points in the scatter plots would lie on a straight
line. That is why deviation from the straight line is used as a measure of the performance
of the methods in prediction. The more it deviates from straight line the less the estimates
of spatial effect is accurate for the particular model. At all the considered values of λ, it
is observed that the GEE approach estimates spatial effect more accurately than the CAR
model.

Figure 4 shows bias and root mean square error vs different λ values for CAR and our proposed
model. From this plot we can see that for both GEE and CAR bias is decreasing with the
increase of λ. Again, for all λ values bias of our proposed GEE method is always lower than
CAR. Same behavior is revealed in the root mean square error plot.

5. Application to a real life example

As an example, district wise vitamin A supplement coverage among postpartum women in
Bangladesh is used in this study for comparing the proposed GEE approach and existing
CAR model. The secondary data collected from “Bangladesh EPI Coverage Survey 2009”
(EPI Coverage Evaluation Survey 2009) are used as an example. Note that instead of the
smaller administrative units upazilas, districts are considered as sub-areas since the data on
vitamin A supplement coverage are not available at the upazila level. As part of a national
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(c) Fitted process by GEE (d) True vs. estimated spatial effect

Figure 1: Comparison of predicted maps using CAR and GEE models with the observed

process and the scatter plot of true versus fitted process for λ = 0.05
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(c) Fitted process by GEE (d) True vs. estimated spatial effect

Figure 2: Comparison of predicted maps using CAR and GEE models with the observed

process and the scatter plot of true versus fitted process for λ = 0.2
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(c) Fitted process by GEE (d) True vs. estimated spatial effect

Figure 3: Comparison of predicted maps using CAR and GEE models with the observed

process and the scatter plot of true versus fitted process for λ = 0.5
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Figure 4: Comparison of Bias and Root Mean Square Error(RMSE) for different λ values

campaign, all postpartum women in Bangladesh are targeted to receive a vitamin A supple-
ment. While due to many reasons this intervention does not reach all the eligible women.
However, the government of Bangladesh monitors the progress of this kind of intervention
through a coverage survey at a regular time interval. Although the program is a nationwide
approach, the progress of the program is measured by the outcome variable, vitamin A sup-
plement coverage rates (VASCR), which differs due to execution of the program conducted
at the division level. While the intensity and efficiency of the execution of the program by
different division are in practice different, we considered that the VASCR of districts of dif-
ferent divisions to be spatially independent. But with the obvious conviction that VASCR
of districts within the same division are spatially correlated, the district estimates of vitamin
A supplement coverage rates (VASCR) reported in the publication EPI Coverage Evaluation
Survey (2009) are used here as an example that would fit to the described GEE approach.
Figure 5 (a) shows the map of observed VASCR data for different districts. Divisions are
identified in the map and the division boundaries are marked by dark lines.

Note that the program, being conducted with division wise administrative setup, we consider
the VACR of districts of different divisions to be spatially independent and that of districts
within the same division are spatially correlated. Under this assumption, the VASCR of
district Habiganj in Sylhet division is expected to be more influenced by the VASCR in other
three Sylhet division districts than by that in its neighbor districts Brahmanbaria (part of
Chittagong division) and Kishoganj (part of Dhaka division). Assuming the VASCR of the
three districts Habiganj, Brahmanbaria and Kishoganj to be correlated may not be reasonable
as the three division have three different level of priority, intensity and efficiency for the
vitamin A supplement program. That is why, we utilized the GEE approach of estimation
and prediction for VASCR of each of the districts. For an understanding of how it could have
been misleading by assuming that ‘all neighbors are likely to be correlated’ - we generated
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the estimates and prediction using CAR model as well.

Table 3 shows the estimates of the regression parameters (intercept) and their corresponding
standard error for both the proposed method and CAR model. Figures 5 (b) and 5 (c) show
the comparison of the fitted values by proposed GEE approach and CAR model with the
observed data (5 a).

Table 3: Estimates of the regression parameter and respective standard errors in case of

vitamin A supplement coverage among postpartum women

Methods Estimates Standard Error

GEE 37.375 0.413

CAR 38.236 3.054

Table 3 reveals that for the vitamin A supplement coverage rate, GEE approach estimates the
regression parameter with a standard deviation lower than that for the estimates using CAR
model. More importantly, from Figure 5, it is clearly depicted that the GEE approach can
capture the clustering more accurately than the CAR model does. It can also be observed
from the Figure 5 that the VASCR of district Habiganj (1) in Sylhet has been substantially
over estimated by CAR method, while the VASCR in the other Sylhet division districts
are moderately low. This has happen evidently due to the reason that the estimation has
taken into consideration the spatial correlation between the VASCR of Habiganj (1) with
its neighbor districts Kishoganj (2) (part of Dhaka division) and Brahmanbaria (4) (part of
Chittagong division). Yet again, the estimated VASCR in Gazipur (5) district has smoothed
down to a quite low level from a high observed value. Noteworthy that VASCR is a program
driven outcome and expected to be dependent on the strength and tenacity of the program
which is executed at the division level. That is why, considering the division as cluster,
the GEE approach has provided more realistic estimated VASCR. In each of the two above
discussed cases of Habiganj and Gazippur, the GEE approach has given smoothed VASCR
which are not contradicting too much with the true picture. Such discrepancies between
the two approaches are observed for some other districts bordering the divisions, such as:
Natore (6), Kushtia (7), Mymensing (3), Khagrachari (8) and Bandarban (9) districts. This
is because CAR model does not take clustering pattern in consideration while predicting
the data. On the other hand, GEE approach assumes the clustering and considers spatial
clustering and independence between them. For this reason GEE model performs better than
CAR for spatially clustered data.

6. Discussion & conclusion

This study has simulated spatially clustered data with known clusters. For known cluster the
proposed method performs better than traditional conditional auto-regressive (CAR) model
in terms of regression parameter estimates and prediction performance. In spatially clustered
data, sites within a cluster are dependent but between clusters they are independent, hence,
sites which are in the border of a cluster are not dependent on a site which belongs to another
cluster even though they are neighbors. The CAR model fails to address this property of
spatially clustered data. It assumes every site is dependent on its neighboring sites although
they are from different clusters. For this reason, our proposed GEE based model with a
scaled-distance based correlation structure preforms better than CAR both in terms of pa-
rameter estimation and prediction performance of spatial effect. The relative performance
of the proposed model is increasingly better in case of stronger clustering pattern which is
demonstrated in terms of different values of the scale parameter λ defined in equation (11).
The reason for such relative advantage of the proposed method over CAR is that, it com-
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(a) True Process

(b) Fitted Process by GEE (c) Fitted Process by CAR

Figure 5: Comparison of the fitted vitamin A supplement coverage among postpartum women

processes by the proposed GEE approach and the CAR model with the observed process.

Division boundaries are marked by dark lines. District names mentioned in the discussions are marked

by numbers as: 1. Habiganj, 2. Kishorganj, 3. Mymensing, 4. Brhmanbaria, 5. Gazipur, 6. Natore,

7. Kushtia, 8. Khagrachari, 9. Bandarban.
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pensate the error induced in CAR model by considering both the within cluster neighbouring
units and the bordering between cluster neighbouring units as equally auto-correlated in case
of clustered data where there is a presence of strong within cluster spatial auto-correlation
and no between cluster auto-correlation.

These findings were also reflected in the analysis of the real life data on coverage rates of
vitamin A supplement for postpartum women in Bangladesh. It is, therefore, recommended
that care and attention should be paid in choice of model for producing spatially revised es-
timates of characteristics with known clustered pattern, a GEE approach with the suggested
correlation structure will perform better than the usual CAR model in such situations. In
particular, when the characteristic of interest is expected outcome of a sub-regionally admin-
istered program or intervention, such differences become crucial in monitoring and evaluation
of the program or intervention.
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