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Abstract

Motivated mainly by lifetime issues, a new lifetime distribution coined“Discrete Poisson-
Gold distribution” is introduced in this paper. Different structural properties of the new
distribution are derived including moment generating function and the rth moment and
others are presented. In addition, we discussed various important mathematical proper-
ties of the new distribution including estimation procedures for estimating the distribution
parameters using the maximum likelihood and method of moments. The usefulness and
credibility of the distribution are illustrated by means of two real-data applications to
show its superior performance over some other well-known lifetime distributions and to
prove its versatility in practical applications.

Keywords: gold distribution, lifetime distribution, mixture distributions, parameter estima-
tion, statistical properties.

1. Introduction

Studying and analyzing lifetime data play a crucial role in a wide variety of fields in applied
sciences such as engineering, medicine, insurance, economics and marketing. The exponential
distribution is widely used for modeling such dataset. Nonetheless, using exponential distri-
bution for some practical applications does not provide a reasonable parametric fit when the
underlying failure rates present non-constant (monotone) shapes. To overcome such problem,
several recent probability distributions have been developed to model such data by com-
pounding some useful life distributions (Gómez-Déniz, Sordo, and Caldeŕın-Ojeda (2014);
Shanker (2015); Al-Omari, Al-Nasser, and Ciavolino (2019); Al-Omari and Shraa (2019);
Altun (2019)).

Compounding Poisson distribution with many other continuous distributions plays a promi-
nent role in deriving new families of distributions. Recall that a random variable X is said to
have a Poisson distribution (PD) with parameter θ > 0 if its probability mass function is:

e−λλx

x!
, λ > 0, x = 0, 1, . . .

This distribution, in particular, have been widely used in stochastic process as claim frequency
distributions where it counts the number of events in a specific period of time.
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The resulting distributions are more flexible for modeling lifetime data and, sometimes, pro-
vide reasonable parametric fits to practical applications as in lifetime and reliability studies.
The flexibility of the new distributions comes from the fact that one or more failure rate
shapes can be decreasing, increasing, bathtub shaped or unimodal. Indeed, it is possible to
construct the mathematical features of a lifetime distribution for a specific life phenomenon
based on its failure rate pattern.

Lindley (1958) introduced the Lindley distribution (LD) for analyzing lifetime data that
belongs to an exponential family. It has been used as an alternative to the exponential
lifetime distributions when the failure rate is unimodal (Bakouch, Al-Zahrani, Al-Shomrani,
Marchi, and Louzada 2012). It has also been widely used in the field of medical sciences,
biological sciences, even in engineering for the data having increasing hazard rate function.
The probability density function (pdf) of the LD with scale parameter θ > 0 is defined by

fLD(x, θ) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0.

The corresponding cumulative distribution function (cdf) is given by

FLD(x, θ) = 1− (1 +
θx

θ + 1
)e−θx, x > 0, θ > 0

The pdf of the LD is a two-component mixture of exponential (θ) and gamma(2, θ). Figure 1
shows the pdf and the cdf of LD for some parameter values.
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Figure 1: The pdf and cdf of LD for some parameter values

Statistical properties and parameter estimation of the LD were studied and applied to a wait-
ing time data by Ghitany, Atieh, and Nadarajah (2008) and Ghitany, Alqallaf, Al-Mutairi,
and Husain (2011). It was shown that LD is better than the exponential distribution in mod-
eling lifetime data using some comparison criteria. Due to the failure rate property of LD,
there are some situations where the distribution fails to provide a good fit in modeling real
lifetime data. To address this situation, many researchers have proposed new classes of distri-
butions based on generalizations and modifications of the LD. Recently, Al-Talib, Al-Nasser,
and Ciavolino (2019) proposed a new continuous distribution named as Gold distribution
(GD); which offers a flexible distribution for modeling lifetime data and generalization of
many statistical distributions such as exponential, gamma and Lindley distributions.

On the other hand, Sankaran (1970) proposed the discrete Poisson–Lindley distribution by
compounding the Poisson and Lindley distributions. Adamidis and Loukas (1998) introduced
a two-parameter exponential-geometric distribution with decreasing failure rate by compound-
ing the exponential and geometric distributions. Gupta and Kundu (1999) and Gupta and
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Kundu (2001) studied and introduced the generalized exponential distribution as an extension
of the exponential distribution. Kuş (2007), proposed an exponential-Poisson distribution by
compounding an exponential and zero truncated Poisson distributions. Chahkandi and Gan-
jali (2009) introduced a new two-parameter distribution family with decreasing failure rate
by compounding power-series distribution and exponential distribution.

In this paper, a new discrete distribution is introduced by compounding the Poisson and
Gold distributions. The main motivations for introducing this lifetime model are to: (i)
propose a new, more flexible lifetime distribution that can be used for modeling lifetime data
in a wider class of reliability problems; (ii) extend both Poisson and Gold distributions; (iii)
accommodate a broad class of failure rate functions.

The rest of the paper is organized as follows: in Section 2, we review the GD. Section 3
describes the new Poisson-Gold distribution (PGD) and study its basic properties, including
defining its pmf and cdf. Section 4 introduced some related discrete distribution to the
PGD. Section 5 investigates the factorial moments of PGD including deriving its mean and
variance. Moment and probability generating functions are also explored in this Section. The
hazard rate function is discussed in Section 6. Estimation of the distribution parameters by
maximum likelihood and method of moments are investigated in Section 7. In Section 8, two
real data applications illustrate the performance of the PGD over other competing reliability
distributions and reports the results. The article ends with concluding remarks in Section 9.

2. The Gold distribution

The GD is a mixture of k independent gamma distributions with a scale parameter (θ) and
different shape parameters (j); where j = 1, 2, . . . , k.

Definition 1. A random variable X is said to have a GD if the pdf and cdf of X are given by

fGD (x; θ, k) =
1∑k

j=1 Γ (j) θj−1
.
xk − 1

x− 1

1

θ
e

−x
θ , x > 0, θ > 0 ; k = 1, 2, ... and x 6= 1, (1)

FGD (x; θ, k) = 1− 1∑k
j=1 Γ (j) θj−1

k∑
j=1

θj−1 Γ
(
j,
x

θ

)
.

Figures 2 and 3 illustrate the pdf and cdf shapes with different parameter values, respectively.

The mean and variance are found to be:

E (X) =

∑k
j=1 Γ (j + 1) θj∑k
j=1 Γ (j) θj−1

.

and

V ar (X) =

k∑
j=1

Γ (j) Γ (j + 1) θ2j(∑k
j=1 Γ (j) θj−1

)2 .

Al-Talib et al. (2019) obtained many interesting properties of the GD.

3. Poisson-Gold distribution

The GD is a mixture of several Gamma distributions, therefore, it could be considered as a
conjugate distribution of Poisson distribution (PD), which is one of the well-utilized discrete
distributions. This fact leads to an analytically tractable compound distribution where one
think of the λ parameter in PD as being random variable drawn from GD.
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Figure 2: The pdf of GD for some parameter values
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Figure 3: The cdf of GD for some parameter values

Definition 2. A random variable X follows a mixed PD with mixing distribution having prob-
ability density function g if its probability function is given by

P (X = x) =

∫ ∞
0

e−λλx

x!
g(λ)dλ;x = 0, 1, . . . (2)

This can be rewritten in terms of the probability generating function, MX(t) as

MX (t) =

∫ ∞
0

eλ(t−1)g(λ)dλ;x = 0, 1, . . .

Note that the right-hand side of this equation is the moment generating function of the mixing
distribution evaluated at t − 1. This, immediately, implies that the probability generating
function of the mixed PD uniquely determines the mixing distribution through its moment
generating function. In the sequel, the mixed PD with mixing distribution with density
function g is denoted by the MP (g), while its probability function is denoted by P (x). Note
that λ can be a continuous/discrete random variable or it may be a finite number of values.

Corollary 1. Suppose that the parameter λ of the PD follows GD (1). Then, the Poisson
mixture of GD “PGD(k, θ)” is given by



Austrian Journal of Statistics 23

PGD (k, θ) =

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)x+j

Γ (x+ 1)
∑k

j=1 Γ (j) θj
; x = 0, 1, 2, . . .

Proof. Using the fact given in (2), then

P (X = x) =

∫ ∞
0

P (X = x|λ) f (λ; θ) dλ

=

∫ ∞
0

e−λ λx

x!

1∑k
j=1 Γ (j) θj−1

 k∑
j=1

λj−1

 1

θ
e

−λ
θ dλ

=
1∑k

j=1 Γ (j) θj−1

1

x!

∫ ∞
0

 k∑
j=1

λx+j−1

 1

θ
e

−λ
θ
−λ dλ

=
1∑k

j=1 Γ (j) θj−1

1

x!

k∑
j=1

∫ ∞
0

λx+j−1 1

θ
e

−λ(1+θ)
θ dλ

=
1

1 + θ

1∑k
j=1 Γ (j) θj−1

1

x!

k∑
j=1

∫ ∞
0

λx+j−1 1 + θ

θ
e

−λ(1+θ)
θ dλ

which is equivalent to

P (X = x) =
1

1 + θ

1∑k
j=1 Γ (j) θj−1

1

x!

k∑
j=1

E(λx+j−1) ; given that λ ∼ Exp
(

θ

1 + θ

)
Therefore,

P (X = x) =
1

1 + θ

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)x+j−1

x!
∑k

j=1 Γ (j) θj−1
; x = 0, 1, 2, . . .

Or simply the probability mass function (pmf) of PGD can be written as

P (X = x) =

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)x+j

Γ (x+ 1)
∑k

j=1 Γ (j) θj
; x = 0, 1, 2, . . . (3)

which completes the proof of Corollary 1.

Figures 4 shows different bar diagrams expressing different shapes of the pmf of PGD for
different values of k and θ: In particular, the null probability can be expressed as:

P (X = 0) =

∑k
j=1 Γ (j)

(
θ

1+θ

)j
∑k

j=1 Γ (j) θj

Moreover, the cumulative distribution function (cdf) of PG distribution will be

P (X ≤ x) =

x∑
i=0

∑k
j=1 Γ (i+ j)

(
θ

1+θ

)i+j
Γ (i+ 1)

∑k
j=1 Γ (j) θj
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Figure 4: The pmf of the PGD for some parameter values

4. PGD related distributions

The PGD is a generalization of some well-known discrete distributions. When k = 1, the pmf
in (3) becomes:

P (X = x) =
1

1 + θ

(
θ

1 + θ

)x
; x = 0, 1, 2, . . . (4)

which is the geometric distribution with probability of fail q = θ
1+θ . Note that this is exactly

the Poisson-Exponential distribution. In fact, based on the GD properties, the PGD can
be considered as a family of discrete distributions. The value of the parameter k plays the
main role in redefining a new discrete distribution. Table 1 represents several special cases of
PGD (θ, k):

Table 1: PGD related distributions

PGD (θ, k) Special cases of PGD (θ, k) Reference
PGD(θ, 1) Poisson-Exponential Distribution Equation (4)
PGD( 1

θ , 2) Poisson-Lindley Distribution Sankaran (1970)
PGD( 1

θ , 3) Poisson-Sujatha distribution Shanker and Fesshaye (2016)
PGD( 1

θ , 4) Poisson-Amarendra distribution Shanker (2016)
PGD( 1

θ , 5) Poisson-Devya distribution New discrete distribution
PGD( 1

θ , 6) Poisson-Shambhu distribution New discrete distribution

5. Moments and generating functions

Many of the most important measures and characteristics of a distribution can be derived and
investigated through its moments, therefore, in this section we consider different moments of
PGD (k, θ) distribution such as moment generating function, probability generation function
and factorial moments.

5.1. Moment generating function

Corollary 2. Suppose that X ∼ PGD (k, θ); then the moment generating function (mgf) is
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given as:

MX (t) =
θ

(2− et)2 ∑k
j=1 Γ (j) θj−1

 k∑
j=1

Γ (j)

( (
2− et

)
θ

)j
Proof.

MX (t) = E
(
etx
)

=

∫ ∞
0

∞∑
x=0

(
etx

e−λ λx

x!

)
g(λ) dλ

It is well-known that the mgf of PD is given by

∞∑
x=0

(
etx

e−λ λx

x!

)
= eλ (et−1)

As a result,

MX (t) = E
(
etx
)

=

∫ ∞
0

eλ(e
t−1)g (λ) dλ

=

∫ ∞
0

eλ (et−1) 1∑k
j=1 Γ (j) θj−1

 k∑
j=1

λ j−1

 1

θ
e

−λ
θ dλ

=
1∑k

j=1 Γ (j) θj−1

 k∑
j=1

∫ ∞
0

eλ (et−1) λ j−1

θ
e

−λ
θ dλ


=

1∑k
j=1 Γ (j) θj−1

 k∑
j=1

∫ ∞
0

λ j−1

θ
e

−2λ+λ et

θ dλ


=

1

(2− et)
∑k

j=1 Γ (j) θj−1

 k∑
j=1

∫ ∞
0

λ j−1

(
2− et

)
θ

e
−λ(2− et)

θ dλ


=

1

(2− et)
∑k

j=1 Γ (j) θj−1

 k∑
j=1

Γ (j)

( (
2− et

)
θ

)j−1


Thus,

MX (t) =
θ

(2− et)2 ∑k
j=1 Γ (j) θj−1

 k∑
j=1

Γ (j)

( (
2− et

)
θ

)j
which completes the proof of Corollary 2.

5.2. Probability generating function

Corollary 3. Suppose that X ∼ PGD (k, θ); then the probability generating function (PGF)
of X is defined as:

GX (η) =

∞∑
x=0

(
ηθ

1+θ

)x
Γ (x+ 1)

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)j
∑k

j=1 Γ (j) (θ)j
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Proof. The PGF of X is defined as

GX (η) = E
(
ηX
)

=

∞∑
x=0

ηxP (X = x)

=

∫ ∞
0

∞∑
x=0

(
ηx
e−λ λx

x!

)
1∑k

j=1 Γ (j) θj−1

 k∑
j=1

λj−1

 1

θ
e

−λ
θ dλ

By using Taylor expansion, we have

∞∑
x=0

(
ηx
e−λ λx

x!

)
= eλ(η−1)

Therefore,

E
(
ηX
)

=

∫ ∞
0

eλ(η−1)∑k
j=1 Γ (j) θj−1

 k∑
j=1

λj−1

 1

θ
e

−λ
θ dλ

=
1∑k

j=1 Γ (j) θj−1

∫ ∞
0

 k∑
j=1

λj−1

 1

θ
e

−λ+λ(η−1)
θ dλ

=
1∑k

j=1 Γ (j) θj−1

k∑
j=1

∫ ∞
0

λj−1

θ
e

−2λ+λη
θ dλ

=
1∑k

j=1 Γ (j) θj−1

k∑
j=1

∫ ∞
0

λj−1

θ
e

−λ(2−η)
θ dλ

=
1

2− η
1∑k

j=1 Γ (j) θj−1

k∑
j=1

∫ ∞
0

λj−1 2− η
θ

e
−λ(2−η)

θ dλ

which is equivalent to

E
(
ηX
)

=
1

2− η
1∑k

j=1 Γ (j) θj−1

k∑
j=1

E(λj−1) ; given that λ ∼ Exp
(

θ

2− η

)
Thus,

E
(
ηX
)

=
1

2− η

∑k
j=1 Γ (j)

(
θ

2−η

)j−1

∑k
j=1 Γ (j) θj−1

; x = 0, 1, 2, . . .

=

∑k
j=1 Γ (j)

(
θ

2−η

)j
∑k

j=1 Γ (j) θj
; x = 0, 1, 2, . . .

Hence,

GX (η) =

∞∑
x=0

ηx

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)x+j

Γ (x+ 1)
∑k

j=1 Γ (j) θj

=
∞∑
x=0

(
ηθ

1+θ

)x
Γ (x+ 1)

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)j
∑k

j=1 Γ (j) (θ)j

which completes the proof of Corollary 3.
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5.3. Factorial moments of PGD

Corollary 4. The rth factorial moment about the origin of a random variable X, where X ∼
PGD(k, θ), and θ, k > 0; is given by the following formula

µ(r) =

∑k
j=1 Γ (j + r) (θ)j+r−1∑k

j=1 Γ (j) θj−1
; r = 1, 2, . . . .

Proof. Let X(r) = X (X − 1) (X − 2) . . . .. (X − r + 1) = X!
(X−r)! be the rth factorial of X,

then the factorial mean can be obtain as

µ(r) = E
(
E[X(r) |λ]

)
=

∫ ∞
0

∞∑
x=0

(
x(r) e

−λ λx

x!

)
1∑k

j=1 Γ (j) θj−1

 k∑
j=1

λj−1

 1

θ
e

−λ
θ dλ

=

∫ ∞
0

λr
∞∑
x=r

(
e−λ λx−r

(x− r)!

)
1∑k

j=1 Γ (j) θj−1

 k∑
j=1

λj−1

 1

θ
e

−λ
θ dλ

However, it can be shown with simple transformation that
∑∞

x=r

(
e−λ λx−r

(x−r)!

)
= 1. It follows

that

µ(r) = E
(
E[X(r) |λ]

)
=

∫ ∞
0

1∑k
j=1 Γ (j) θj−1

 k∑
j=1

λj+r−1

 1

θ
e

−λ
θ dλ

=
1∑k

j=1 Γ (j) θj−1

k∑
j=1

∫ ∞
0

λj+r−1 1

θ
e

−λ
θ dλ

=
1∑k

j=1 Γ (j) θj−1

k∑
j=1

E(λj+r−1) ; given that λ ∼ Exp (θ)

Thus,

µ(r) =

∑k
j=1 Γ (j + r) (θ)j+r−1∑k

j=1 Γ (j) θj−1
; r = 1, 2, . . . .

which completes the proof of Corollary 4.

Accordingly, the mean of the PGD is given directly as

µ(1) =

∑k
j=1 Γ (j + 1) θj∑k
j=1 Γ (j) θj−1

However, the variance of the PGD can be found based on the second factorial moment:

µ(2) =

∑k
j=1 Γ (j + 2) (θ)j+2−1∑k

j=1 Γ (j) θj−1
= E (X (X − 1)) = E

(
X2
)
− E(X)

Therefore,

V ariance =

∑k
j=1 Γ (j + 2) (θ)j+2−1 +

∑k
j=1 Γ (j + 1) θj∑k

j=1 Γ (j) θj−1
−

(∑k
j=1 Γ (j + 1) θj∑k
j=1 Γ (j) θj−1

)2
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6. Hazard rate function

The hazard rate is used to monitor the lifetime of a unit since it is more informative about
the underlying mechanism of failure than the lifetime distribution. The hazard rate function
of the PGD is given by

P (X = x+ 1)

P (X = x)
=

∑k
j=1 Γ(x+1+j)( θ

1+θ )
x+1+j

Γ(x+2)
∑k
j=1 Γ(j)θj∑k

j=1 Γ(x+j)( θ
1+θ )

x+j

Γ(x+1)
∑k
j=1 Γ(j)θj

;

=
1

x+ 1

∑k
j=1 Γ (x+ 1 + j)

(
θ

1+θ

)x+1+j

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)x+j
;

Thus,

P (X = x+ 1) =
1

x+ 1

∑k
j=1 Γ (x+ 1 + j)

(
θ

1+θ

)x+1+j

∑k
j=1 Γ (x+ j)

(
θ

1+θ

)x+j
P (X = x) ;

The above expression is a decreasing function in x implying unimodalilty. Furthermore,

P (X = x+ 2) P (X = x)

P (X = x+ 1)2 =

(∑k
j=1 Γ (x+ j)

(
θ

1+θ

)x+j
)(∑k

j=1 Γ (x+ 2 + j)
(

θ
1+θ

)x+2+j
)

(x+ 2) Γ (x+ 1)

(∑k
j=1 Γ (x+ 1 + j)

(
θ

1+θ

)x+1+j
)2 < 1

Now, since the density function P (X = x) is log-concave, the distribution in (3) has an
increasing failure rate, see Johnson, Kemp, and Kotz (2005) (p. 209). For instance, for k = 1
we have

P (X = x+ 1)

P (X = x)
=

θ

1 + θ
;

Therefore,

P (X = x+ 1) =
θ

1 + θ
P (X = x) ;

7. Parameter estimation

In this section, we investigated the estimation of the parameters of the PGD by the maximum
likelihood and the method of moment.

7.1. Maximum likelihood estimation

A maximum likelihood method is one of the most widely used technique of estimation in
statistics. This method finds the parameter value that maximizes the likelihood function.
More precisely, if the data are independent and identically distributed, then we have

L (θ) =
n∏
i=1

f(xi; θ)

Consequently,

L(θ) =
n∏
i=1

1

1 + θ

∑k
j=1 Γ (xi + j)

(
θ

1+θ

)xi+j−1

xi!
∑k

j=1 Γ (j) θj−1
;
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Equivalently, to find the value of θ that maximizes the probability function of the PGD, we
can use the logarithm of the likelihood function

log L (θ) = ln

(
n∏
i=1

f(xi; θ)

)

=
n∑
i=1

ln(f (xi; θ))

= −n ln (1 + θ)−
n∑
i=1

ln(xi!)− n ln

 k∑
j=1

Γ (j) θj−1

+
n∑
i=1

ln

 k∑
j=1

Γ (xi + j)

(
θ

1 + θ

)xi+j−1


which can be solved by finding the first derivative with respect to θ.

As a special case, when k = 1

log L (θ) = −n ln (1 + θ)−
n∑
i=1

xi (ln (θ)− ln(1 + θ))

It follows that,

dlog L (θ)

dθ
=

(
−n

1 + θ

)
−

n∑
i=1

xi

(
1

θ
− 1

1 + θ

)
= 0

by solving the above equation, we find that

θ̂ = X̄

Another special case, when k = 2

dlog L (θ)

dθ
=
−n

1 + θ
− n Γ (2)

Γ (1) + Γ (2) θ

+

(
1

1 + θ

)2 n∑
i=1

xiΓ (xi + 1)
(

θ
1+θ

)xi−1
+ (xi + 1) Γ (xi + 2)

(
θ

1+θ

)xi
Γ (xi + 1)

(
θ

1+θ

)xi
+ Γ (xi + 2)

(
θ

1+θ

)xi+1 = 0

= −2n+
1

θ

n∑
i=1

xi + (xi + 1)2
(

θ
1+θ

)
1 + (xi + 1)

(
θ

1+θ

) = 0

Thus,

dlog L (θ)

dθ
= −2n+

1

θ

n∑
i=1

θ(xi + (xi + 1)2) + xi
θ(xi + 2) + 1

= 0

Solving such non-linear equation can be done using any numerical iteration methods such as
Newton Raphson method.

In general, the maximum likelihood estimate of θ can be found numerically by solving the
following non- linear equation:

dlog L (θ)

dθ
=
−n

1 + θ
− n

∑k
j=1 (j − 1) Γ (j) θj−2∑k

j=1 Γ (j) θj−1

+

(
1

1 + θ

)2 n∑
i=1

∑k
j=1 (xi + j − 2) Γ (xi + j)

(
θ

1+θ

)xi+j−2

∑k
j=1 Γ (xi + j)

(
θ

1+θ

)xi+j−1
= 0

(5)

7.2. Method of moments (MoM)

The MoM is one of the most popular techniques and probably the oldest technique in statistics
for constructing an estimator. Let µj(θ) = EθX

j be the theoretical moment and µ̂j(θ) =
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∫
xjdF̂ (x) = 1

n

∑n
i=1X

j
i be the empirical moment. From the law of large numbers, it is

well-known that the empirical moments are close to theoretical ones. MoM estimators of
θ1, . . . , θk, are θ̂1, . . . , θ̂k , which defined as solutions to the following system of equations

µj(θ) = µ̂j , j = 1, . . . , k,

Table 2 shows some parameter estimation results for different values of k.

Table 2: MoM estimators for several values of k

Value of k θ̂ using MoM
1 X̄

2
−(1+X̄)±

√
X̄2−6X̄+1

4
3 A
4 B

Where

A =

3

√
−4X̄3 − 15X̄2 + 9

√
3
(√
−9X̄4 − 32X̄3 + 339X̄2 − 60X̄ + 5

)
+ 285X̄ − 23

9×2(2/3)

−
(
−4X̄2 − 10X̄ + 14

)
182(1/3) 3

√
−4X̄3 − 15X̄2 + 9

√
3
√
−9X̄4 − 32X̄3 + 339X̄2 − 60X̄ + 5 + 285X̄ − 23

+
(
1− X̄

)
/9

and B is the solution of the following equation

X̄
1

θ̂4
+
(
X̄ − 1

) 1

θ̂3
+ 2

(
X̄ − 1

) 1

θ̂2
+ 6

(
X̄ − 1

) 1

θ̂
− 24 = 0

where X̄ is the sample mean.

8. Real data application

Despite their small size, thunderstorms are among the most common and dangerous of all
weather phenomenon. One of the main concerns of the meteorologists is to forecast after-
noon convective thunderstorm activity at the Cape Kennedy Florida. This is because of the
importance of thunderstorms in designing launch vehicles and planning of space missions.

PD is a statistical model suitable to be used for the case of independent events and mean
equals variance, which is impractical condition in most of data sets such as thunderstorms.
One may think to use the negative binomial distribution (NBD) as an alternative of the PD.
Indeed, fitting NBD to the count data require the mean to be less than the variance which is
not valid in the thunderstorms data.

Therefore, to clarify the application of the PGD, we consider the fit of the distribution to the
count data on thunderstorm events at Cape Kennedy, Florida in two cases; for the month of
June and for summer seasons (Jun, July and August) within eleven years period; from 1957
- 1967; in Tables 3 and 4 (Falls, Williford, and Carter 1971). The ML estimates have been
evaluated by numerical optimization of the log-likelihood function instead of solving (5). The
Poisson-Lindley distribution (PLD) and Poisson-Shanker distribution (PSD) introduced by
(Shanker, Hagos, and Sujatha (2015), Shanker and Fesshaye (2017)) have also been fitted for
comparison.

It is customary to use the chi-square test only when none of the expected frequencies (Ei) is
less than 5; sometimes this requires that we combine some of the cells. As a result, we have
combined some cells. The calculated value of chi-square is shown in the below Table 3. Note
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that the number of degrees of freedom is given by df = c − p− 1, where c is the number of
terms in the chi-square statistic and p is the number of estimated parameters in the fitted
distribution.

Table 3: Goodness of fit test for the number of days that experienced X thunderstorms events
at Cape Kennedy, Florida for the month of June within 11-year period (June 1957 through
June 1967), Falls et al. (1971)

Expected Frequency

Number of Observed PGD PGD PGD PGD
Thunderstorms Frequency PD PLD PSD (k = 1) (k = 2) (k = 3) (k = 4)

0 187 155.6 185.3 186.4 188.4 185.3 184.8 185.4
1 77 117.0 83.5 82.3 80.8 83.5 83.6 82.7
2 40 43.6 35.9 35.3 34.7 35.9 36.3 36.3
3 17 11.0 15.0 15.0 14.9 15.0 15.2 15.4
4 6 2.1 6.1 6.3 6.4 6.1 6.1 6.3
5 2 0.3 2.5 2.6 2.7 2.5 2.4 2.4
6 1 0.1 1.7 1.9 2.1 1.7 1.7 1.4

Total 330 330 330 330 330 330 330 330

ML Estimate θ̂ 0.7515 0.5542 0.5956 0.7515 0.5542 0.4485 0.3809
Chi-Square 31.93 1.43 1.48 1.73 1.37 1.25 1.09

d.f. 2 3 3 3 3 3 3
p-value 0.0000 0.6985 0.6869 0.6303 0.7126 0.7410 0.7795

The expected Poisson frequencies along with the test statistics of this data set are provided
in Table 3 and indicate a poor fit to this model (χ2 = 31.93, df = 2, p− value = 1.16× 10−7).
The other models have a much better fit than that given by the Poisson model and the best
one is PGD with k = 4 (χ2 = 1.09, df = 3, p − value = 0.7795) at the price of 3 df . The
empirical and fitted distribution using the different methods are compared in Figure 5.

Table 4: Goodness of fit test for the number of days that experienced X thunderstorms events
at Cape Kennedy, Florida for the 11-year period of record for the summer season (June, July,
August), (Summer 1957 through Summer 1967); Falls et al. (1971)

Expected Frequency

Number of Observed PGD PGD PGD PGD
Thunderstorms Frequency PD PLD PSD (k = 1) (k = 2) (k = 3) (k = 4)

0 549 547.5 547.5 550.8 558.4 547.5 545.1 546.5
1 246 364.8 259.0 255.7 250.3 259 259.9 257.2
2 117 148.2 116.9 115.5 112.2 116.9 118.5 118.6
3 67 40.1 51.2 51.1 50.3 51.2 51.8 52.5
4 25 8.1 21.9 22.3 22.5 21.9 21.9 22.3
5 7 1.3 9.2 9.6 10.1 9.2 9.0 9.1
6 1 0.3 6.3 7.0 8.2 6.3 5.8 5.8

Total 1012 1012 1012 1012 1012 1012 1012 1012

ML Estimate θ̂ 0.8123 0.5926 0.6319 0.8123 0.5926 0.4746 0.3995
Chi-Square 141.42 9.60 10.09 12.06 9.60 8.81 8.05

d.f. 3 4 4 4 4 4 4
p-value 0.0000 0.0477 0.0389 0.0169 0.0477 0.0660 0.0898

The expected frequencies of PD, PLD and PSD along with the test statistics of this data set
are provided in Table 4 and indicate a poor fit to this model. The PGD with k = 3 and k = 4
have a slightly better fit than the other models. The empirical and fitted distribution using
the different methods are compared in Figure 6.
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Figure 5: The empirical and fitted distribution of thunderstorms for the month of June

9. Concluding remarks

In this paper, a new discrete distribution has been introduced by compounding the Poisson
and Gold distributions (PGD). The properties of the PGD were derived and discussed, the
properties include the factorial moments, moment generating function, probability generating
functions and hazard rate. Moreover, the unknown parameters are also estimated by using
the maximum likelihood estimation method and the method of moments. In addition, the
goodness of fit of PGD has been discussed with two applications from thunderstorms and
the fit has been compared with PD, Poisson-Lindley distribution (PLD) and Poisson-Shanker
distribution (PSD). The data analysis shows that the PGD gives satisfactory fit in the two
datasets and slightly better than the other competitive distributions. It appears that the PD
is not an appropriate choice to fit thunderstorm data. In fact, the PGD is recommended
for fitting such data and may help the meteorologists for proper designing launch vehicles,
planning of space missions and in launch operations at different stations in the case of having
thunderstorms activities.
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