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Abstract

This study evaluates the empirical performance of four power transformation fami-
lies: extended Tukey, Modulus, Exponential, and Yeo—Johnson, in modeling the return
in the context of GARCH(1,1) models with two error distributions: Gaussian (normal)
and Student-t. We employ an Adaptive Random Walk Metropolis method in Markov
Chain Monte Carlo scheme to draw parameters. Using 19 international stock indices
from the Oxford-Man Institute and basing on the log likelihood, Akaike Information Cri-
terion, Bayesian Information Criterion, and Deviance Information Criterion, the use of
power transformation families to the return series clearly improves the fit of the nor-
mal GARCH(1,1) model. In particular, the Modulus transformation family provides the
best fit. Under Student’s t-error distribution assumption, the GARCH(1,1) models under
power transformed returns perform better in few cases.

Keywords: adaptive random walk Metropolis, GARCH(1,1), power transformations, volatility.

1. Introduction

Normality is assumed in various statistical methods such as hypothesis testing, linear regres-
sion analysis, econometric modeling, and quality control problems. Many processes, however,
follow non-normal distributions perhaps due to the absence of exactly normal distributed
characteristics. Transformation can be employed as an alternative approach for dealing with
non-normal data. Omne such popular transformation is the Box-Cox family, introduced by
Box and Cox (1964). For example, in the case of econometric models—especially AutoRe-
gressive Conditional Heteroscedastic (ARCH) model of Engle (1982) which was extended by
Bollerslev (1986) to become Generalized ARCH (GARCH)—Sarkar (2000) and Utami and
Subanar (2013) applied the transformation of extended Box—Cox (Bickel and Doksum 1981)
and shifted Box—Cox (Box and Cox 1964), respectively, on returns data with volatilities fol-
lowing an ARCH(1,1)-type model. Through an empirical study, Sarkar (2000) found that
the residual of the proposed model was closer to normality than that of the basic one. The
proposed model is also able to capture the strong nonlinear dependence in financial time se-
ries data. In the study of realized variance (RV) model, Gongalves and Meddahi (2011) and
Nugroho and Morimoto (2016) applied the Box-Cox transformation on RV data, and showed
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that the transformation outperforms the logarithmic transformation.

As in Sarkar (2000), our preliminary study showed that the parameter estimation of the
extended Box-Cox transformation, i.e. T'(z,\) = [sign(z)|z|* — 1] /A for A > 0, is significant
and larger than 1, but is outperformed by the basic model. When the simple version of
extended Box-Cox was applied—which is none but the extended Tukey transformation (Tukey
1957), i.e. T(x,)\) = sign(z)|z|* for A > 0—the parameter estimation is significant and the
extended model outperforms the basic model in terms of likelihood ratio test. This result
confirms the findings of Nugroho, Susanto, Prasetia, and Rorimpandey (2019). With the
absence of the transformation scarcity to improve statistical models, the first objective of
this study is examining the performance of the power transformation families for returns in
the context of GARCH model. Findings are illustrated by real examples. We give special
attention to the transformation families of extended Tukey (Tukey 1957), the Exponential
(Manly 1976), the Modulus (John and Draper 1980), and the Yeo-Johnson (Yeo and Johnson
2000), as all of them accommodate negative values of returns. The last three transformations
were successfully applied by Tsiotas (2009) and Nugroho and Morimoto (2014) for lagged-
volatility process in the context of stochastic volatility. Recently, Nugroho (2019) used the
Yeo—Johnson function to transform the returns data that is applied to estimate a normal
GARCH(1,1) model. The proposed model gives a better fit than the basic model. To the best
of our knowledge, no study has been conducted on the employment of the four transformations
in the context of GARCH model.

Furthermore, previous studies show evidence that financial time series often yield the leptokur-
tic characteristics (which means the return distribution is heavy-tailed), and even asymmet-
ric. Financial literature accordingly suggests replacing the assumption of error normality with
flexible distribution functions which are capable of accommodating heavy tails or asymmetry,
such as the Student-t, generalized error, and skewed Student-t; see, e.g., Angelidis, Benos, and
Degiannakis (2004), Braione and Scholtes (2016), Nugroho, Mahatma, and Pratomo (2018),
and Nugroho and Morimoto (2019). This study focuses only on two different distributions on
error terms: normal and Student-¢ distributions, and compares the performance with that of
the the power transformation families. The second goal of this study is thus extending the
study done by Sarkar (2000), assuming the error term with Student-¢ distribution.

In contrast with Sarkar (2000) and Utami and Subanar (2013), who respectively suggest
the maximum likelihood (ML) and second-order least square (SLS) methods for estimating
their models, we use the Adaptive Random Walk Metropolis (ARWM) method of Atchade
and Rosenthal (2005) in the Markov Chain Monte Carlo (MCMC) algorithm to estimate the
model parameters. In some cases of GARCH-type models it is difficult to apply an ML-based
method because of the positive and stationary conditions for variance and also the complexity
of the models (see, e.g., Nakatsuma (2000), Ardia (2009), Henneke, Rachev, Fabozzi, and
Nikolov (2011), and Boonyakunakorn, Pastpipatkul, and Sriboonchitta (2019)). The MCMC
algorithm offers a flexible and attractive method, and has been widely used in statistics and
other scientific fields.

The rest of this article is arranged as follows: Section 2 provides the methodology including
the proposed model, power transformation family, and estimation method. Section 3 presents
the data analysis and empirical application of the model on real financial data. The last
section provides the conclusion and future work.

2. Proposed model and estimation

This section extends the GARCH(1,1) model with normal and Student-¢ distributed error
terms, by applying a power transformation family to return series. We give attention to four
power transformation families that work on real values. Firstly, GARCH model is constructed
based on the assumption of normally returns errors, which are not able to accommodate the
leptokurtosis commonly found in financial time series. In the Value-at-Risk (VaR) estima-
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tion using GARCH model, the general finding is that the use of normal assumption might
underestimate the VaR. Angelidis et al. (2004) and Braione and Scholtes (2016) showed the
importance of allowing for heavy-tails in the distributional assumption, such as Student-¢,
since this distribution is able to produce better accuracy of the VaR forecasts modeled by
using GARCH models. Meanwhile Satoyoshi and Mitsui (2011) and Liu, Li, and Ng (2015)
considered the use of GARCH-type models with Student-¢ distributed errors to price options.
Their empirical illustrations suggest that the proposed pricing models provide more accurate
price estimates than the normal GARCH-type models.

We realize that the ML method is the most popular method to estimate GARCH parame-
ters, but this study employs the powerful MCMC technique to deal with inference Bayesian
problems. In the context of normal GARCH model, Nakatsuma (2000) and Haitao (2010)
compared the MCMC method to the ML method by using real financial data and showed that
the MCMC method is more precise and reliable. In particular, Nakatsuma (2000) employed
the Metropolis—Hastings algorithm in the MCMC procedure dan obtained that the numer-
ical standard error of the MCMC is much less than the standard error of the ML for each
paramater in the ARMA-GARCH model. In the context of ARCH models, Andrade (2011)
also recommended the Metropolis—Hastings MCMC algorithm since it provides more accu-
rate estimates and more robust than the ML method in estimating the credibility intervals of
parameters.

2.1. GARCH(1,1) models with power transformed returns

The GARCH model is one of econometric models widely employed on modeling and fore-
casting of time-varied variance. A member of the family is the GARCH(1,1), implying an
interpretation that a variance of tomorrow is simply a function of long-term average variance,
squared return of today, and today’s variance. This comes in the form:

Ri = €, € ~N(0,02), izl,...,n,}
2

_ 2 2 L
of = wHae |+ PBoi, 1=2,...,n,

(1)

where R; denotes the asset return of an asset at time 7.

Model (1) has some constraints including w > 0, «, 5 > 0 for positive variance, and o+ < 1
for the covariance stationarity. In most cases, we get a model with a small « and large 5. The
«a + [ magnitude is called variance persistence, measuring the endurance of the innovation
effects on future volatility (or, how quickly the volatility to decay towards its averages). When
the sum is 1.0, we have a long memory in volatility, then the IGARCH model should be
employed. The high persistence (approaching 1.0) indicates slow decay, while low persistence
indicates fast decay.

This study generalizes the GARCH(1,1) model by applying four power transformation families
for return series. Given a transformation function indicated by T and involving a transfor-
mation parameter Ar, the return equation in Model (1) is now expressed as

T(Ri,\r) =€, € ~ N(0,07),

where T'(R;, A7) represents a power transformation function upon data R;. For any fam-
ily T with the parameter A, the likelihood function of original data R;, expressed by
L(Ri|lo2, A\, T), is fully determined through an inverse transformation 7'(R;, A7) — R;. Thus
this consists of transformed likelihood data function multiplied by Jacobian of involves trans-
formation, i.e.

LZ(R’L|W7 «, /87 AT? T) = LZ(T(RZ7 )‘T)’wv «, 67 )\T7 T) X J(RZJ AT’T)7 (2)
OT(R;, )

OR;
data by R = (R, Ra, ..., Ry). For instance, by taking the natural logarithm for the likelihood

with the Jacobian term is expressed by J(R;, A\r|T') = . Let us denotes the observed



4 GARCH Models under Power Transformed Returns

function L; di Eq. (2), the log-likelihood function for the model is given by

1 <~ [T(R; 2
lOgL(R|w OémBa)\T; ) **10g(277 *7210g — QZ[(I%O_’Q)\T)]
i=1 i

+ Zlog(J(Ri,)\ﬂT))

When the conditional distribution of R; is the standardised t¢-distribution with zero mean, the

variance o7, and degrees of freedom v, following the definition of t-distribution in Bollerslev

(1987), the log-likelihood equation for the model is expressed as

log L(R|w, o, B, v, A\p, T) = nlogT (y; 1) —nlogl <—) - fZIOg (v—2)o )

1 RZ,A
’/+ Zl < r >—|—Zlog (Ri, Ar|T))

2.2. Transformation families

A conventional power transformation was firstly proposed by Tukey (1957, 1977) to simplify
data analysis, addressing on three characteristics: (1) effects are additive; (2) the error vari-
ability is constant; and (3) the error distribution is symmetrical and possibly nearly normal.
The transformation was then modified by Box and Cox (1964) to improve additivity, nor-
mality, and homoscedasticity of a set of observed data. The transformations of Tukey and
Box and Cox works only on positive real values. To accommodate all real numbers, several
modifications were already proposed. This study discusses and compares four transforma-
tion families, namely the Extended Tukey (ET), Eksponensial (Exp), Modulus (Mod), and
Yeo—Johnson (YJ), that are applied to returns series whose volatility follows the GARCH
model.

Manly (1976) proposed an exponential transformation allowing negative values. This was
reported as effective to transform skew unimodal distribution to normal-like, almost symmet-
rical distribution, but not good enough for bimodal or U-shaped distribution.

John and Draper (1980) proposed a modification called the Modulus transformation allowing
negative values. They reported that the transformation works most effectively on a distribu-
tion which is nearly symmetrical to a centre point, and change the long-tailed distribution
to become more normal. The basic idea is applying the same power transformation to two
tailed distribution which is symmetrical to zero.

Yeo and Johnson (2000) proposed a power transformation family suitable for reducing skew-
ness to normality and having many good characteristics such as the Box—Cox power trans-
formation family. While estimating the transformation parameters, they found a parameter
value which minimise the Kullback-Leibler distance between the normal and transformed
distribution.

Thus while the BC, Exp, and YJ transformations are used to make skewed distribution to
become more symmetrical and normal, the modulus transformation family proposed by John
and Draper (1980) can be used to eliminate the positive kurtosis.

The formulas for the transformation families compared in this study are shown in Table 1,
with associated Jacobian added. The signum function is defined as

+1, y >0,
sign(y) =4 0, y=0,
-1, y<O0.
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Table 1: The four transformation families and their associated Jacobian

Family T T(R;, A\r) J(R;, A7 |T)
Tuke . sign(Ri)\Ri\AT, Ar >0 i )\T|Ri|>\T_1, Ar >0
Y ~ | sign(R;)log(|Ril), Ar=0 1\ sign(R:)|Ri|™' Ar=0
exp{\rR;} — 1
Exp. = Ar » A 70 = exp{ArR;}
Riv )\T - 0
sign(R;) [(|R1\ + 1) — 1]
Mod. = N P ATED (R M
sign(R;) log(|Ri| + 1), A =0
s+ DM -1
%7 Rz > 07 )‘T 7é 0
T
Y] . 10g(Rl + ), R; >0, Ar =0 . { (Rz + 1))\T_1 s R, >0
- 1— N2—Ar _ 1 - . 1-A7 .
(1—-Ry) R <0 Ap£2 (—R; +1) , R <0
A — 2
- log(—Ri + 1), R, <0, A\p =2

The values A7 = 1, Agzp = 0, Aproq = 1, and Ay ; = 1 correspond with no transformation.

2.3. Parameter estimation

The MCMC algorithm involves two steps; see Robert and Casella (2011) and Geyer (2011).
The first step is the construction of Markov chain having a posterior distribution as its sta-
tionary distribution. The second step involves the use of the output of Markov chain to
calculate some posterior estimation such as the mean, standard deviation, and credible set,
using the Monte Carlo approximation. Previous papers have applied the MCMC algorithm
in modeling the volatility, and shown its applicability. Further explanation on MCMC can be
found on Robert and Casella (2011).

There are several ways to construct the Markov chain. One of the most popular classes is a
method based on the random walk Metropolis (RWM). The theoretical explanation of RWM
is provided by Roberts and Rosenthal (2001) on optimal scaling and posterior shape, and by
Roberts, Robert, and Frigesso (2003) on convergence. In the efforts to improve the efficiency of
RWM in terms of convergence, Atchade and Rosenthal (2005) proposed an adaptive model of
the method, named the adaptive RWM (ARWM). The model sequentially sets the parameter
proposal to achieve optimal acceptance rate. Nugroho and Susanto (2017) and Nugroho
(2018) applied the method in the context of GARCH-type models. The following is the
ARWM algorithm to update a parameter value of x:

(i) Initialise the parameter xy and step size sg.

(ii) At the (j + 1) iteration, given z; and s;.
(a) Draw the proposal #* = x; + s; - ¢j, where g; ~ N(0,1).

p(z])

p(zj]")
terior distribution, and 6 = min{1, r(z;,2*)} is defined.

b) Calculate the Metropolis ratio: r(x;,z*) = , where p(x|-) represents a pos-
J

(c) If 6 > u for u ~ Uniform(u;0,1), then the proposal is accepted and xj11 = z*;
otherwise, the proposal is rejected and xj41 = x;.

m(z*) _
(d) Calculate: s* = max < Smin,Sj + ((]Jr:_)il)n , where m(z*) is the frequency of
J

proposal acceptance x* and 7 s the expected acceptance probability. If s* > simaz,
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then sj11 = Spmaz; if 8° < Siaz, then s;41 = s;.

Following Roberts and Rosenthal (2009), we set Sy = 1075 and $;,4; = 10 as such so that
the asymptotic acceptance rate of the algorithm is approximately 0.44, and A = 0.6. The
choice of step size scale of s; has big impacts on the changes of proposal values. Intuitively,
when sZ2 is very small, the algorithm resulting movement is also very small, which further
resulting a poor mixing time. Contrarily, if s? is very large, then the movement is also large,
resulting in the rejection of the proposal, and thus a poor mixing algorithm.

Furthermore, here we accept the fact that the proposal distribution for the Metropolis ratio in
the ARWM method can be calculated using the posterior distribution p(6|R) for a parameter
0 = (w,a, B,v,Ar). In the Bayesian framework, the posterior distribution is the product of
likelihood function and prior distribution:

p(0|R) o< L(R[O) x p(0),

where p() is the prior distribution capturing prior uncertainty on the parameter 6. In this
study we adopt the prior distribution:

w,a, f ~ N(0,1000) Ly.0,8500;
where 11, = 1 if condition = holds and 0 otherwise, as in Ardia and Hoogerheide (2010),
v ~ Exp(0.01) 1,5
as in Deschamps (2006) and Az ~ N (0, 1000).

3. Empirical application

3.1. Data and preliminary findings

Before estimation, we shall look at the sample data, which—in this case—is the daily returns.
It comsists of 19 international stock indices, freely available at the Oxford-Man Institute’s
Realised Library (https://realized.oxford-man.ox.ac.uk/data/download). The study
involves data within the period of January 2000 to December 2007. The full sample are the
following: AEX Index, Bovespa, CAC 40, DAX, DJIA, Euro STOXX 50, FTSE 100, FTSE
MIB, FT Straits Times, Hang Seng, IBEX 35, IPC Mexico, KOSPI Composite, Nasdaq 100,
Nikkei 225, Russel 2000, S&P 500, S&P CNX Nifty, and Swiss Market.

Table 2 reports standard summary statistics of the 19 stock indices. The skewness and kurtosis
of the return series result in some deviation from a normal standard distribution as indicated
by Jarque-Bera (JB) normality test with critical value of 5.98, at the 5% significance level.
Therefore, assuming normality for the errors when estimating the models should be rejected.
It is suggested that the error distribution of returns is assumed to be not normal. Specifically
the S&P CNX Nifty data is highly skewed, as the skewness is less than —1; Nikkei 225
data is negatively skewed, as the skewness is between —1 and —0.5; the other ones are fairly
symmetrical, as the skewness is between —0.5 and 0.5. For this characteristic, it is probable to
transform the return data so that its distribution can approximate the symmetric distribution
(Sarkar 2000), a part from its ability to capture the presence of nonlinear dependence in time
series data. Meanwhile the kurtosis for all series is greater than 3 which indicates a leptokurtic
distribution (i.e. tails are heavier than the normal distribution. Therefore our presumption
is that the Modulus transformation introduced by John and Draper (1980) is better than the
others.

3.2. Estimation results

For parameter estimation, this study employs the MCMC simulation with 6000 iterations for
the Markov chain, where the initial 1000 samples are discarded (the practice of so-called burn-
in) and the remaining samples are stored for Monte Carlo calculation. The burn-in is done
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Table 2: Skewness, kurtosis, and JB Statistics for untransformed returns

Stick Index Mean SD Skewness Kurtosis JB Stats
AEX Index —0.042 1.156 —0.203 9.77 8660.8
Bovespa 0.003 1.717 —0.173 8.10 4748.1
CAC 40 —0.037 1.205 —0.147 7.29 3477.9
DAX —0.030 1.305 —0.099 7.98 4642.7
DJIA 0.023 1.121 —0.009 11.70 13969.6
Euro STOXX 50 —0.026 1.332 —0.200 7.76 4281.0
FTSE 100 —0.036  0.936 —0.143 7.42 3629.5
FTSE MIB —0.019 0.976 —0.305 11.50 13434.6
FT Straits Times —0.034 0.915 —0.374 11.94 12823.3
Hang Seng —0.048 1.000 —0.072 15.93  28524.6
IBEX 35 —0.051 1.260 —0.035 8.41 5485.6
IPC Mexico 0.037 1.284 —0.001 8.22 5060.1
KOSPI Composite —0.044 1.183 —0.342 9.02 6676.0
Nasdaq 100 —0.018 1.359 0.105 10.60 10703.0
Nikkei 225 —0.033 1.164 —0.553 13.87  21361.5
Russel 2000 0.010 1.405 —0.263 7.41 3653.1
S&P 500 0.010 1.164 —0.174 11.06 12051.2
S&P CNX Nifty 0.023 1.199 —1.007 13.88 19736.0
Swiss Market —0.019 0.976 —0.305 11.49 13434.6

to eliminate the worst early samples and its implementation was succesful in our MCMC
calculations although not reported (see, e.g., Figure 1). It means that our Markov chains
(after the burn-in period) have reached stationarity. For our data set, we set the plausible
default initial values:

Wy = 0.01, g = 0.2,50 = 0.7, )\T,O = 0.5, vy = 10.

Notice that although the initial values vary (even for the very poor initial values Ay o = 4 and
vo = 40) in our experiments, the posterior results are almost equal to the results obtained for
the above values. This result is consistent to Ardia and Hoogerheide (2010). This is one of
the advantages of the MCMC method compared to the ML method which is often sensitive
to initial values (Takaishi 2010).

Furthermore, the efficiency of Markov chain might be measured by Integrated Autocorrelation
Time (IACT). In this study, TACT was estimated using adaptive truncated periodogram
estimator of Sokal (1997). Although not reported, we particularly notice that the Markov
chains of v and Ar are well mixed, which are indicated by the values—less than 50—of the
TACT. The TACT quantity can be interpreted as the number of MCMC samples required for
an independent sample to be drawn, or equivalently, the length of Markov Chain (after the
burn-in) divided by the Effective Sample Size (ESS). Therefore, we have ESSs larger than
100. According to Givens and Hoeting (2013), it indicates that the estimation method is
efficient to estimate the parameters of degrees of freedom and power transformation, which
are not simple, and recommends to make reliable inferences on the interest parameters. In
a visual way, for example, Figure 1 displays the traceplots of the posterior samples for the
NLR-GARCH{(1,1) models adopting FTSE 100 returns and shows that the chains fluctuate
around their means.

Due to space limitation, this study only presents the posterior mean for Ay in the GARCHn(1,1)
model as in Table 3 and for (v, A7) in the GARCH#(1,1) model as in Table 4. The asterisk sym-
bol indicates a significant estimated value in terms of 95% Highest Posterior Density (HPD)
interval, meaning that the interval does not contain a value corresponding to no transforma-
tion. Here the HPD interval is calculated using the algorithm proposed by Chen and Shao
(1999).

For the GARCHn(1,1) model, it can be seen that almost all sample data provide significant
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Figure 1: Trace plots of posterior samples for the NLR-GARCH{¢(1,1) models adopting FTSE
100 returns by applying, from left to right: ET, Exp, Mod, and YJ transformations. The
green line represents a posterior mean

evidence for all considered power transformations. Modulus transformation provides a signif-
icant estimated value for Ar in all data cases. ET transformation is not significant for Russell
2000 data only, Exp transformation is not significant for CAC 40, FT Straits Times, and
IBEX 35, while YJ transformation is not significant for CAC 40 and F'T Straits Times data.
These results indicate the success of power transformation families to transform the most of
financial time series returns data in the context of GARCH models with normally distributed
errors. In particular, Mod transformation is the most successful for capturing nonlinearities
of the return time series.

Table 3: Parameter estimates of Ay for GARCHn(1,1) models. The values in parentheses are
the corresponding standard deviations

Data ET Exp Mod YJ

AEX Index 0.9115* (0.0103)  0.0212* (0.0078)  0.5861* (0.0384) 1.0418* (0.0147)
Bovespa 0.9539* (0.0111)  0.0137* (0.0059)  0.8033* (0.0315) 1.0251* (0.0123)
CAC 40 0.9033* (0.0110)  0.0114 (0.0076)  0.5904* (0.0375)  1.0223 (0.0144)
DAX 0.9077* (0.9073)  0.0194* (0.0072)  0.6455* (0.0343) 1.0412* (0.0138)
DJIA 0.8967* (0.0106)  0.0199* (0.0081)  0.5702* (0.0390) 1.0416* (0.0157)
Euro STOXX 50 0.9037* (0.0106)  0.0168* (0.0067)  0.6237* (0.0347) 1.0322* (0.0131)
FTSE 100 0.9386* (0.0111)  0.0334* (0.0102)  0.6508* (0.0451) 1.0712* (0.0174)
FTSE MIB 0.9079* (0.0103)  0.0532* (0.0079) 0.5130* (0.0392) 1.0925* (0.0150)
FT Straits Times  0.9520* (0.0122) —0.0025 (0.0111) 0.6602* (0.0465) 1.0045 (0.0188)
Hang Seng 0.9177* (0.0118)  0.0156* (0.0083)  0.5836* (0.0417) 1.0312* (0.0160)
IBEX 35 0.9100* (0.0107)  0.0076 (0.0062)  0.6136* (0.0342) 1.0315* (0.0131)
IPC Mexico 0.9117* (0.0104)  0.0139* (0.0067)  0.6148* (0.343)  1.0289* (0.0137)
KOSPI Composite  0.9344* (0.0113)  0.0513* (0.0082)  0.6768* (0.0372) 1.0951* (0.0147)
Nasdaq 100 0.9544* (0.0110)  0.0114* (0.0067)  0.7909* (0.0349) 1.0514* (0.0142)
Nikkei 225 0.8743* (0.0103)  0.0655* (0.0066)  0.4684* (0.0360) 1.1230* (0.0136)
Russel 2000 0.9834 (0.0120)  0.0204* (0.0075)  0.9038* (0.0363) 1.0408* (0.0141)
S&P 500 0.8935* (0.0103)  0.0268* (0.0082)  0.5648* (0.0395) 1.0570* (0.0153)
S&P CNX Nifty 0.8738* (0.0105)  0.0593* (0.0073)  0.4613* (0.0383) 1.1006* (0.0151)
Swiss Market 0.9086* (0.0106)  0.0529* (0.0081) 0.5157* (0.0395) 1.0927* (0.0153)

Although not reported, this study has also studied and compared the residuals of competing
models to determine the transformations that are successful in transforming returns so that the
distribution of residuals approaches normal distribution. For all cases, we find that—although
still deviate from normality—all power transformations successfully reduce the coefficients of
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Figure 2: QQ plots of S&P CNX Nifty returns (a) without transformation, (b) with ET
transformation, (c) with Exp transformation, (d) with Mod tranformation, and (e) with YJ
transformation against the standard normal distribution

skewness and kurtosis as well as the JB statistics, even when the estimation of Ap is not
significant. The Exp, Mod, and YJ transformations provide the best performance to reduce
the skewness coefficient in the cases of six, five, and eight data, respectively. When comparing
the coefficient of kurtosis, this study finds that Mod transformation is the most effective
for reducing the coefficient of kurtosis in all cases of data. Furthermore, the results of the
normality test confirm the previous assumption that the Mod transformation is most suitable
for all cases of return data, which is indicated by the smallest JB statistical value. Moreover,
the quantile-quantile (QQ) plots in Figure 2, for example, demonstrate that the estimated
residuals from fitting the S&P CNX Nifty daily returns to the NLR-GARCH(1,1) models are
closer to normal distribution. In particular, the panel (d) suggests that the specification of
Mod transformation provides the best fit.

Move to the model with the Student-t distribution specification for return errors, Table 4
shows that the parameter of power transformation is no longer significant in most cases when
the normal distribution is replaced by the Student-¢ distribution. It is very clear because
the use of different distributions for return errors will affect the treatment of returns. In
this case, the Student-¢ distribution causes a weak support for the power transformation of
return. The parameter estimates are significant for six, five, nine, and six data when applying
the ET, Exp, Mod, and YJ transformations, respectively. Regarding the degrees of freedom
parameters v, the ET, Exp, and YJ transformations do not affect the estimate of v. It
means that the estimates of v from the two model classes are close each other. In contrast,
Mod transformation increases the degrees of freedom in all data cases, except the FT Straits
Times data. It means that the tail-thickness of Student-t distribution is reduced, which is in
accordance with the objective of Mod transformation which changes long-tailed distribution
to be more normal. Although the power transformations are supported by several data, the
next section discusses whether the significance of Ap is sufficient to provide evidence against
the basic GARCH#(1,1) model.

3.3. Model selection

In modeling case, one of the important parts of statistical analysis is the selection of the best
model from a set of candidate models, given a set of data. Since the NLR-GARCH models
nest a basic GARCH model, Log-likelihood Ratio Test (LRT) can be used to compare those
two models. The LRT statistic for the general model M, against the simpler model Mj is
calculated as

LRT = 2 <log L(R|M,, ) — log L(R]Ms,é)> ,
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Table 4: Parameter estimates of (v, A\y) for GARCH¢(1,1) models
v (v, A1)

Data NoT BT Fxp Mod Y7

AEX Index 7.56 (6.01,1.0168)  (7.47,0.0002) _ (12.08,0.8348%)  (7.50,1.0102)

Bovespa 12.45  (10.36,1.0184)  (12.22,0.0055)  (19.76,0.9082)  (12.04,1.0098)
CAC 40 777 (8.32,0.9902)  (7.75,—0.0006)  (16.90,0.7767)  (7.81,1.0057)

DAX 8.36 (9.25,0.9855)  (8.27,0.0065)  (13.67,0.8557%)  (8.32,1.0223)

DJIA 7.80 (9.58,0.9684*) (7.62,—0.0027) (14.43,0.7839%) (7.69,0.9997)

Euro STOXX 50  8.10 (8.89,0.9846)  (7.93,0.0028)  (15.34,0.8151%)  (7.96,1.0074)

FTSE 100 9.90  (8.06,1.0316%) (10.24,0.0249%)  (12.52,0.9403)  (10.49,1.0558*)
FTSE MIB 733 (5.60,1.0517%)  (7.31,0.0171)  (8.12,0.9541)  (7.25,1.0336)

FT Straits Times ~ 9.63  (6.21,1.0750%)  (9.64,—0.0126)  (9.23,1.0463)  (9.69,0.9925)

Hang Seng 8.23 (8,53,0.0983)  (8.25,0.0011)  (20.16,0.7590%)  (8.35,1.0105)

IBEX 35 7.77 (7.28,1.0099)  (7.69,0.0046)  (12.48,0.8403*%)  (7.69,1.0266)

IPC Mexico 7.63 (6.98,1.0180)  (7.62,—0.0029)  (11.22,0.8854)  (7.69,0.9979)

KOSPI Composite ~ 9.38  (7.55,1.0362%)  (10.19,0.0385%)  (11.65,0.9422)  (10.13,1.0731%)
Nasdaq 100 11.65 (9.27,1.0290)  (11.41,0.0072)  (12.08,0.9995)  (11.87,1.0496%)
Nikkei 225 6.66 (6.87,0.9916) (6.87,0.0288*) (10.94,0.7719%) (6.78,1.0511*)
Russel 2000 23.39 (19.38,1.0169) (25.38,0.0169%) (26.05,0.9848) (25.91,1.0366%*)
S&P 500 7.53 (8.92,0.9724)  (7.52,0.0037)  (12.09,0.8130%)  (7.54,1.0153)

S&P CNX Nifty 5.84 (5.89,1.0007)  (6.13,0.0421%)  (10.02,0.7503%)  (5.97,1.0645%)
Swiss Market 732 (5.55,1.0528%)  (7.31,0.0172)  (7.94,0.9635)  (7.29,1.0339)

where @ denotes the vector of parameter esrtimates. The criterion is based on the ratio
likelihood having an asymptotic chi-squared distribution, with degrees of freedom equal to
the number of additional parameters in the general model. For our study, notice that at the
1%, 5%, and 10% level of significance with 1 degree of freedom, we reject My when the LRTs
are greater than 6.64, 3.84, and 2.71, respectively. In these cases, the LRT tells us to favor
Mgy over M.

Furthermore, the models in a class of NLR-GARCH models are non-nested, so we can not
compare them by conducting an LRT. We therefore computed the value of three selection
criteria which do not assume nested models, namely Akaike Information Criterion of Akaike
(1976), Bayesian Information Criterion (BIC) of Schwarz (1978), and Deviance Information
Criterion (DIC) of Spiegelhalter, Best, Carlin, and van der Linde (2002). The AIC and BIC

are respectively calculated using:

AIC = 2k — 2log L(R|0mqez) and BIC = klog(s) — 2log L(R|0maz),

with & is the number of model parameters, s is the number of data points, and 6,4, is the
parameter set that maximizes the observed data likelihood L(R|f). Meanwhile, DIC is a
Bayesian generalization of AIC and is based on the posterior distribution of the deviance
D(0) = —2logp(R|6). The formula of DIC is expressed by

DIC = 2D(0) — D(0) = —4Eyr[log L(R|0)] + 2log L(R|6),

with @ is the parameter mean. Notice that the models associated with the lower AIC, BIC,
and DIC are more adequate.

Table 5 reports the log-likelihood values for all models that are fitted to the observed data.
It can be seen in the case of NLR-GARCHn(1,1) models with a significant paramater for Ar,
the LRT at the 5% and 10% levels of significance favors the models and provides an evidence
against the basic model. This finding is confirmed by AIC and DIC, where Table 6 shows
that the DIC values for the NLR-GARCHn(1,1) models are smaller than the basic model
in almost all cases. (The AIC estimates are not presented here because of space limitation
and its similarity to DIC.) The AIC and DIC results show that the basic model outperforms
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the following NLR-GARCHn(1,1) models in a few cases: model with ET transformed return
for Russel 2000 data series, the model with Exp transformed return for CAC 40, FT Straits
Times, and IBEX 35 data series, and the model with YJ transformed returns for CAC 40
and FT Straits Times data series. In particular, we found that the GARCHn(1,1) model with
Mod transformed return best fits data, indicated by smallest AIC and DIC values, followed
by ET specification (except for KOSPI Composite and Russel 2000 data series). This result
is similar to those of the BIC presented in Table 7, which the only exception is the Russel
2000 data series. The third and fourth best ranks are very competitive between the Exp and
YJ transformations. In this case, the BIC selected fewer data than the AIC and DIC. Both
AIC and DIC provide evidence for 16 data, whereas the BIC provides evidence for seven data
only. Those findings therefore confirm the previous findings that the financial return series
should be transformed using power transformations, specifically Mod transformation, in the
context of GARCH(1,1) model with normally distributed errors.

After we compare the models with Student-t specification based on the LRT statistics,
there are seven data adopting the ETR-GARCH{(1,1) model, five data adopting the ExpR-
GARCH{(1,1) model, five data adopting the ModR-GARCH{(1,1) model, and six data adopt-
ing the YJR-GARCH{¢(1,1) model which provide evidence against the GARCH¢(1,1) model.
On that result, both AIC and DIC indicate that each of ET, Mod, and YJ transformations
performs the best fit on three sample data. A similar result is produced by BIC value (except
for CAC 40 and IPC Mexico in the Mod specification). These results seem to weakly support
the specification of the power transformation families for return series in most cases when the
return errors are Student-¢ distributed.

Furthermore, both AIC and DIC indicate that the superiority of NLR-GARCH{#(1,1) model
is supported by two sample data with insignificant in the ET parameter and three sam-
ple data with insignificant in the Exp and Mod parameters. Meanwhile, in the case of
data providing significant evidence in the tranformation parameter, the ETR-GARCH¢(1,1),
ExpR-GARCH¢(1,1), ModR-GARCH{¢(1,1), and YJR-GARCH#(1,1) models outperform the
GARCH{¢(1,1) model on 5 of 6, 2 of 5, 1 of 9, and 3 of 6 sample data, respectively. The results
on Mod and YJ specifications are similar to the BIC results. According to BIC the ETR-
GARCHt(1,1) and ExpR-GARCH?(1,1) models outperform the GARCH?(1,1) model on 3 of
6 and 1 of 5 sample data with a significant transformation parameter. Those findings show
that the statistical significance of the transformation parameter in the NLR-GARCH¢(1,1)
models can not guarantee whether the model performs better than the basic GARCH#(1,1).
On the basis of DIC estimates, the FTSE 100, FT Straits Times, Hangseng, IPC Mexico,
and KOSPI Composite data series support all transformation specifications, where the best
performance is produced by different transformations.

4. Conclusion and future work

This study investigated the performance of four power transformation families, i.e. the
extended Tukey, exponential, Modulus, and Yeo—Johnson, in transforming the returns of
GARCH(1,1) models. The proposed models, namely NLR-GARCH(1,1) models, are exten-
sions of the basic GARCH model of Bollerslev (1986, 1987) and provide the alternative mod-
els to Sarkar (2000) and Nugroho et al. (2019). We performed the Bayesian inference of the
proposed model by the ARWM sampler in the MCMC method. Firstly, in terms of auto-
correlation time, we observed that the ARWM sampler has high efficiency for sampling the
transformation parameter in the nonlinear function. It is concluded that our MCMC algo-
rithm works well and the ARWM sampler can reliably estimate the key parameters in the
NLR-GARCH(1,1) models. The reader can easily extend and employ the computing algo-
rithm for the other specifications of NLR-GARCH models. Secondly, all observed return series
were found to support all considered power transformation families in the context of normal
GARCH(1,1) model where the Modulus transformation appears to be the best fitting model,
and this outperformance is always statistically significant. Therefore this study concludes
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that the power transformation families can be applied successfully to transform the returns
for GARCH(1,1) model with normally distributed errors. Meanwhile, the results of Student-t
NLR-GARCH(1,1) models indicate that the performance of transformations does not depend
on the significance of transformation parameter.

Areas for further research would include investigating the skew version of error distribution
in the returns. It would also be interesting to apply the power transformation families to the
volatility process in order to extend the results of Nugroho et al. (2019).
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GARCH Models under Power Transformed Returns

Table 5: Log likelihood estimates for NLR-GARCH(1,1) models

GARCHn(1,1) model

Data Transformation for returns

NoT ET Exp Mod YJ
AEX —6035.55 —6003.20 —6032.34 —5972.43 —6031.95
Bovespa —8044.89 —8037.70 —8042.64 —8025.28 —8043.09
CAC 40 —6512.75 —6474.70 —6512.34 —6446.61 —6512.12
DAX Index —6726.05 —6691.16 —6722.66 —6673.12 —6722.15
DJIA —5734.21 —5690.74 —5731.83 —5673.41 —5731.00
Euro STOXX 50 —6868.32 —6829.91 —6865.27 —6807.07 —6865.62
FTSE 100 —5106.10 —5092.07 —5101.06 —5073.35 —5098.34
FTSE MIB —5388.42 —5352.07 —5366.04 —5303.05 —5371.17
FT Straits Times —4221.13 —4214.19 —4221.40 —4195.61 —4221.65
Hang Seng —5251.24 —5226.82 —52/9.41 —5200.76 —5249.45
IBEX 35 —6777.18 —6743.97 —6776.91 —6711.60 —6774.96
IPC Mexico —6715.06 —6683.08 —6713.07 —6652.03 —6713.11
KOSPI Composite —6031.79 —6016.23 —6013.27 —5994.26 —6013.26
Nasdaq 100 —6485.12 —6477.55 —6485.98 —6468.36 —6478.70
Nikkei 225 —6093.54 —6020.82 —6044.37 —5965.71 —6055.04
Russel 2000 —7093.31 —7092.79 —7090.34 —7090.11 —7089.49
S&P 500 —5869.48 —5823.38 —5864.74 —5806.53 —5862.89
S&P CNX Nifty —5424.15 —5359.13 —5392.22 —5309.28 —5402.54
Swiss Market —5388.44 —5352.40 —5352.40 —5302.73 —5371.29

GARCH(1,1) model

AEX —5955.88 —5962.06 —5962.31 —5961.00 —5962.50
Bovespa —8014.23 —8023.98 —8024.50 —8023.33 —8024.25
CAC 40 —6440.42 —6442.56 —6442.90 —6438.71 —6442.26
DAX Index —6662.80 —6663.68 —6663.67 —6662.27 —6663.08
DJIA —5662.54 —5665.04 —5666.15 —5662.83 —5666.21
Euro STOXX 50 —6797.72 —6800.81 —6801.00 —6798.41 —6800.85
FTSE 100 —5063.69 —5059.69 —5059.82 —5061.59 —5058.24
FTSE MIB —5277.62 —5274.50 —5277.93 —5278.97 —5277.89
FT Straits Times —4183.72 —4172.26 —4179.86 —4180.24 —4179.91
Hang Seng —5199.29 —5197.19 —5196.87 —5192.39 —5197.31
IBEX 35 —6696.76 —6702.99 —6702.93 —6700.94 —6702.05
IPC Mexico —6641.36 —6638.73 —6639.65 —6638.53 —6639.37
KOSPI Composite —5978.88 —5975.04 —5971.42 —5977.62 —5970.35
Nasdaq 100 —6454.09 —6454.63 —6455.97 —6456.62 —6452.38
Nikkei 225 —5943.50 —5951.89 —5947.73 —5945.44 —5948.38
Russel 2000 —7083.82 —7088.07 —7087.90 —7086.18 —7086.82
S&P 500 —5791.20 —5793.55 —5794.74 —5791.73 —5794.31
S&P CNX Nifty —5276.30 —5299.25 —5291.16 —5293.34 —5294.78
Swiss Market —5277.38 —5274.68 —5277.99 —5278.76 —5277.88

Note: Bold and italic values in each specification of error distribution indicate
acceptance of proposed models, respectively, at the 5% and 10% significance

levels of LRT.




Austrian Journal of Statistics

Table 6: Model comparison via DIC

GARCHn(1,1) model

Data Transformation for returns

NoT ET Exp Mod YJ
AEX 12074.43 12010.79, 12069.59, 11948.57; 12068.133
Bovespa 16092.90 16078.63; 16088.653 16054.94; 16089.964
CAC 40 13028.84 12953.76, 13029.16 12897.44; 13028.34
DAX Index 13454.93 13386.07, 13449.64, 13350.47;  13448.623
DJIA 11471.38 11385.165 11467.893 11350.90; 11465.735
Euro STOXX 50 13738.61 13663.75, 13733.733 13618.22; 13735.074
FTSE 100 10215.13 10189.03, 10206.004 10149.50; 10200.773
FTSE MIB 10780.07 10708.29, 10736.153 10609.09; 10746.98,4
FT Straits Times 8444.39 8432.68, 8447.34  8394.85; 8447.21
Hang Seng 10506.40 10457.60o 10502.243 10406.18;  10503.794
IBEX 35 13557.03 13491.14, 13557.34 13427.62; 13553.963
IPC Mexico 13433.71 13370.245 13430.164 13309.23;  13429.533
KOSPI Composite 12067.69 12035.214 12030.343 11992.32;  12029.95,
Nasdaq 100 12974.20 12959.61, 12971.58, 12940.78;  12961.003
Nikkei 225 12190.41 12045.99, 12092.803 11935.56; 12113.924
Russel 2000 14189.85 14190.28 14184.603 14183.35; 14184.145
S&P 500 11741.75 11650.30, 11733.694 11617.17; 11729.275
S&P CNX Nifty 10851.58 10722.54, 10789.003 10623.04; 10808.794
Swiss Market 10779.23 10709.07, 10736.823 10608.05;  10746.754

GARCH{(1,1) model

AEX 11915.62 11929.25 11928.92 11926.94 11929.99
Bovespa 16032.38 16052.55 16054.08 16051.19 16052.98
CAC 40 12884.29 12889.92 12891.20 12882.46; 12888.76
DAX Index 13329.64 13332.33 13332.24 13329.90 13331.01
DJIA 11329.57 11335.03 11337.16 11330.89 11337.28
Euro STOXX 50 13599.02 13606.30 13606.62 13602.10 13606.18
FTSE 100 10131.39 10124.01, 10124.423 10127.97, 10121.12,
FTSE MIB 10559.40 10553.70; 10560.52 10563.13 10560.68
FT Straits Times 8371.49 8349.56; 8364.613 8365.844 8364.215
Hang Seng 10403.15 10399.663 10398.29, 10389.83; 10400.344
IBEX 35 13397.41 13410.97 13410.49 13407.30 13408.94
IPC Mexico 13286.50 13282.27, 13284.60, 13281.72; 13283.463
KOSPI Composite 11961.57 11954.943 11947.81, 11960.30, 11945.14,
Nasdaq 100 12912.25 12914.44 12916.43 12918.33 12909.43,
Nikkei 225 11891.35 11908.62 11900.38 11895.88 11901.17
Russel 2000 14174.79 14186.47 14182.63 14180.51 14181.75
S&P 500 11587.11 11592.38 11595.01 11588.78 11593.78
S&P CNX Nifty 10556.84 10603.34 10587.10 10591.71 10594.61
Swiss Market 10558.43 10554.42; 10560.79 10562.37 10560.57

Note: Subscript indicates the rank of the model in each specification of error
distribution. Bold value indicates the best model in all specifications.
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GARCH Models under Power Transformed Returns

Table 7: Model comparison via BIC

GARCHn(1,1) model

Data Transformation for returns

NoT ET Exp Mod YJ
AEX 12093.38 12036.315 12094.60 11974.53; 12093.92
Bovespa 16111.77 16104.40, 16114.74 16084.02; 16115.88
CAC 40 13048.14 12978.99, 13054.46 12923.23; 13053.96
DAX Index 13474.10 13412.67, 13474.99 13376.03; 13473.69
DJIA 11490.66 11411.19, 11492.96 11376.38; 11491.87
Euro STOXX 50 13758.83 13689.83, 13760.20 13643.87; 13760.92
FTSE 100 10234.46 10213.77, 10231.93, 10175.86; 10226.583
FTSE MIB 10799.04 10733.83; 10761.533 10634.84; 10772.374
FT Straits Times 8464.03 8457.69,  8472.27  8420.22 8472.26
Hang Seng 10523.50 10482.61, 10528.67 10430.86; 10528.11
IBEX 35 13576.91 13517.49, 13583.97 13452.38; 13579.50
IPC Mexico 13451.74 13395.535; 13455.90 13333.74; 13455.73
KOSPI Composite 12085.59 12061.575 12056.02, 12017.69; 12055.923
Nasdaq 100 12991.91 12984.77, 12997.92 12966.65; 12987.113
Nikkei 225 12208.82  12071.50, 12118.173 11960.69;  12139.694
Russel 2000 14208.87 14215.38 14209.99 14209.73 14208.52¢
S&P 500 11761.36  11676.65, 11758.89, 11642.55; 11755.923
S&P CNX Nifty 10869.79 10747.33; 10812.933 10647.18; 10834.414
Swiss Market 10799.02 10733.89, 10761.573 10634.87; 10772.324

GARCH{(1,1) model

AEX 11941.56 11961.12 11962.40 11959.16 11962.11
Bovespa 16058.06 16085.10 16085.66 16079.64 16086.03
CAC 40 12911.01 12922.25 12922.50 12914.50 12922.47
DAX Index 13355.22 13364.46 13364.51 13361.26 13363.44
DJIA 11354.17 11367.15 11369.31 11362.35 11369.51
Euro STOXX 50 13625.48 13638.96 13639.39 13633.57 13639.34
FTSE 100 10156.99 10156.84 10156.93 10160.28 10153.87;
FTSE MIB 10586.27 10584.67; 10593.16 10594.69 10592.90
FT Straits Times 8396.36 8380.78; 8396.12 8396.34 8396.68
Hang Seng 10427.19 10430.79 10430.76 10421.42; 10430.55
IBEX 35 13423.27 13442.99 13443.43 13438.55 13441.30
IPC Mexico 13312.58 13314.77 13315.94 13314.27 13316.08
KOSPI Composite 11987.46 11987.14 11979.82; 11992.11 11978.15;
Nasdaq 100 12942.09 12946.11 12949.42 12950.06 12937.72,
Nikkei 225 11916.10 11940.81 11932.40 11927.56 11934.12
Russel 2000 14201.31 14208.15 14205.55 14203.57 14204.41
S&P 500 11611.11 11623.90 11625.85 11620.18 11625.39
S&P CNX Nifty 10581.41 10634.93 10618.86 10623.02 10625.80
Swiss Market 10586.25 10584.70; 10593.11 10594.78 10592.89

Note: Subscript indicates the rank of the model in each specification of error
distribution. Bold value indicates the best model in all specifications.
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