GARCH Models under Power Transformed Returns: Empirical Evidence from International Stock Indices
DOI:
https://doi.org/10.17713/ajs.v50i4.1075Abstract
This study evaluates the empirical performance of four power transformation families: extended Tukey, Modulus, Exponential, and Yeo--Johnson, in modeling the return in the context of GARCH(1,1) models with two error distributions: Gaussian (normal) and Student-t. We employ an Adaptive Random Walk Metropolis method in Markov Chain Monte Carlo scheme to draw parameters. Using 19 international stock indices from the Oxford-Man Institute and basing on the log likelihood, Akaike Information Criterion, Bayesian Information Criterion, and Deviance Information Criterion, the use of power transformation families to the return series clearly improves the fit of the normal GARCH(1,1) model. In particular, the Modulus transformation family provides the best fit. Under Student's t-error distribution assumption, the GARCH(1,1) models under power transformed returns perform better in few cases.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Didit Budi Nugroho, Tundjung Mahatma, Yulius Pratomo

This work is licensed under a Creative Commons Attribution 3.0 Unported License.
The Austrian Journal of Statistics publish open access articles under the terms of the Creative Commons Attribution (CC BY) License.
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.
Copyright on any research article published by the Austrian Journal of Statistics is retained by the author(s). Authors grant the Austrian Journal of Statistics a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its original authors, citation details and publisher are identified.
Manuscripts should be unpublished and not be under consideration for publication elsewhere. By submitting an article, the author(s) certify that the article is their original work, that they have the right to submit the article for publication, and that they can grant the above license.
 
            
         
             
            