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Abstract

We consider a vector autoregression model with exogenous variables and Markov-
switching regimes to describe complex systems with cyclic changes of states. To estimate
and forecast the states, we propose EM and discriminant analysis algorithms based on
non-classified and classified data samples accordingly. The accuracy of the algorithms is
examined by means of computer simulation experiments.
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1. Introduction

Regime-switching models are a convenient tool for the analysis of complex systems with cyclic
changes of states (Hamilton 2008). Most studies are devoted to Markov-switching vector
autoregression model (MS-VAR) (Krolzig 1997). If the regimes are independent or there is a
high uncertainty regarding the classes of states, then the models with independent-switching
regimes may be more preferable. The autoregression and regression models of such type were
entirely studied in Malugin and Kharin (1986) and Malugin (2014). The object of the study
is a vector autoregression model with Markov-switching states including exogenous variables
(MS-VARX), thus allowing a multivariate linear regression ones (Malugin 2014).

2. Models and tasks of research

Let a complex system at time t be characterized by a random observation vector defined
on the probability space (Ω,F,P), where Ω is a space of elementary objects ω ∈ Ω; P is a
probability measure: P(A) = P{ω ∈ A}, A ∈ F. Let {Ω0, . . . ,ΩL−1} be a decomposition of
Ω into a finite number of non-empty disjoint subsets, such that: Ωl ∈ F,P{Ωl} = P{ω ∈
Ωl} > 0,

⋃
l∈S(L) Ωl = Ω,S(L) = {0, . . . , L − 1}. These subsets are the classes of states of a

complex system, and L is the number of classes.

A random vector yt = (x′t, z
′
t)
′ ∈ Rn can be partitioned into subvectors of endogenous
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variables xt = (xtj) ∈ <N and deterministic exogenous variables (regressors) zt = (ztk) ∈ Z ⊂
<M . It is assumed that, in general, the time series is described by a model RS-VARX(p)(p ≥
1):

xt =

p∑
i=1

Ad(t),ixt−i +Bd(t)zt + ηd(t),t, t = 1, . . . , T, (1)

where x1−p, . . . , x0 ∈ <N are a set of the given initial values; ηd(t),t ∈ <N is a random
disturbances or innovation process; and d(t) ∈ S(L) = {0, . . . , L− 1} is a state of a system at
time t.

Model (1) satisfies the following assumptions:

M.1. Segmented-stationary condition: for each class of states l ∈ S(L) matrices of autore-
gression coefficients {Al,i}(i = 1, ..., p) satisfy the stationarity condition for VAR(p) model
(Lutkepohl 2005);

M.2. Disturbance assumptions: disturbances {ηl,r} (t, s = 1, ..., T, l ∈ S(L)) are independent
Gaussian random vectors with parameters: E{ηl,t} = 0N ∈ <N ,E{ηl,tη′l,s} = δt,sΣl, where
δr,s — the Kronecker delta.

M.3. Structural heterogeneity conditions: for matrices of autoregression and regression coef-
ficients: Al 6= Ak and (or) Bl 6= Bk ∀k 6= l, k, l ∈ S(L).

We consider a model with L (2 ≤ L < s + 1) classes of states: where s ≥ 1 — number of
state switching points 1 < τ1 < . . . < τs < T . Concerning the sequence of states d(t) ≡ dt ∈
S(L)(t = 1, ..., T ) there are two types of assumptions:

d1. dt (t = 1, ..., T ) — independent identically distributed random variables with proba-
bility distribution P {dt = l} = πl > 0 (l ∈ S(L)) ,

∑
l∈S(L) πl = 1; P {dt = l} = πl >

0 (l ∈ S(L))
∑

l∈S(L) πl = 1;

d2. dt (t = 1, ..., T ) — homogeneous ergodic Markov chain (GCM) with the distribution
determined by the vector of probability of the initial state π and matrix one-step transition
probabilities P :

π = (πl), πl = P {d1 = l} > 0 (l ∈ S(L)) ,
∑

l∈S(L)
πl = 1;

P = (pkl), pkl = P{dt+1 = l|dt = k} ≥ 0(k, l ∈ S(L)),
∑

l∈S(L)
pkl = 1, k ∈ S(L). (2)

Under the conditions of d1 and d2, we deal with the models IS-VARX and MS-VARX respec-
tively. Model (1) includes a number of special cases: model of multivariate linear regression
RS-MLR, if p = 0, M ≥ 1 (Malugin 2014); model RS-VAR without exogenous variables, if
p > 0, M = 0 (Krolzig 1997).

The true values of model parameters {Al, Bl, Σl (l ∈ S(L)), π P and the moments of switching
state {τi}(i = 1, ..., s) are unknown. There is either classified or a non-classified sample of
observations (X̄, Z̄) (X̄ = (xt) ∈ <NT , Z̄ = (zt) ∈ ZT ⊆ <T ), so that the vector of states
d̄ = (dt) ∈ ST (L) is either known or unknown. We presented two statistical classification
algorithms for MS-VARX model in these cases: EM algorithm for joint parameters and vector
of states estimation for non-classified sample and discriminant analysis algorithm in the case
of classified sample for classification of out-of-sample observations. For IS-MLR and IS-VARX
models the listed tasks are solved in Malugin (2014).

3. Splitting of mixtures described by MS-VARX

Representations for the model parameters. Model (1) under the assumptions M.1-M.3,
d.1 and d.2 can be represented in the regression form

xt = Πd(t)ut + ηd(t),t, (3)
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where Πd(t) = (Ad(t),1, . . . , Ad(t),p, Bd(t)) is the block N × (pN +M) — matrix of parameters;

ut = (x′t−1, . . . , x
′
t−p, zt)

′ ∈ <Np+M — the stacked vector of predetermined variables formed
from lagged endogenous and exogenous variables with values known at time t.

In this case we use a sample of observations (X̄, Ū), where X̄ = (x′1, . . . , x
′
T )′ ∈ <NT —

the values of the endogenous variables, which correspond to the values Ū = (u′1, . . . , u
′
T )′ ∈

<NpT × ZT ⊆ <(Np+M)T of predefined variables. For the model (3) we will also denote:

θl ∈ <m(m = N × (pN + M) + N(N + 1)/2) — stacked vector of parameters for the class
l ∈ S(L) consisting of independent elements of matrices {Πl, Σl} (l ∈ S(L));

φ ∈ <q(q = Lm+ (L− 1)(L+ 1)) — parameters of a mixture model, including {θl} and π, P ,
φ̂ ∈ <q — statistical estimate of φ ∈ <q;
D = (d1, . . . , dT )′ ∈ ST (L) — the state vector for the period under observation;

γ̃l,t = P{dt = l|X̄, Ū ; φ̃} — posterior probabilities of the class l ∈ S(L) at the moment t;

ξ̃kl,t = P{dt+1 = l|dt = k; X̄, Ū ; φ̃} — posterior probability of transition from class k ∈ S(L)
to class l ∈ S(L) at the moment t(t = 1, . . . , T − 1).

If the model (3) satisfies the assumptions M.1-M.3, then the random vector xt ∈ <N under
the given values ut ∈ <Np+M and dt = l(l ∈ S(L)) has conditional normal distribution with
density

pX(x, u, θl) = (2π)−
N
2 |Σl|−

1
2 exp

{
−1

2
(x−Πlu)′Σ−1l (x−Πlu)

}
, x ∈ <N , u ∈ <Np+M . (4)

The likelihood function for parameters φ under the fixed state vector D ∈ ST (L) and assump-
tions (4) and d.2 is of a form:

L(φ; X̄, Ū ,D) = πd1pX(x1;u1, θd1)
T∏
t=2

pdt−1,dtpX(xt;ut, θdt). (5)

Let Λ(φ, φ̃) be the conditional expectation of the log-likelihood function l(φ; X̄, Ū ,D) =
lnL(φ; X̄, Ū ,D) induced by the distribution P{D|X̄, Z̄; φ̃} of the random vector D given
the fixed sample (X̄, Ū) and initial value φ̃ of the parameter vector, i.e.

Λ(φ, φ̃) = Eφ̃{l(φ; X̄, Ū ,D)|X̄, Ū ; φ̃} =

=
∑

l∈S(L)
γ̃l,1 lnπl +

T∑
t=2

∑
k∈S(L)

∑
l∈S(L)

ξ̃kl,t ln pkl +
T∑
t=1

∑
l∈S(L)

γ̃l,t ln pX(xt;ut, θ̃l) =

= Q1({πl}) +Q2({pkl}) +Q3({θl}). (6)

In accordance with a general approach (Malugin 2014; Bilmes 1998) we obtain an analytical
representation for the unknown characteristics. In the considered case we have conditional nor-
mal distribution for vector of endogenous variables with the density pX(x;u, θl) for the given
vector of predetermined (lagged or exogenous) variables ut = (x′t−1, . . . , x

′
t−p, zt)

′ ∈ <Np+M .
Formulas for the posterior probabilities {γ̃l,t}, {ξ̃l,t} are based on the density pX(x;u, θl) and
followed from the Lemma 1.

Lemma 1. For fixed values of the parameters {θ̃l}, π̃, P̃ of the model (3) posterior probabil-
ities γ̃t,l, ξ̃kl,t for the sample (X,Z) are of a form:

γ̃l,t =
α̃l,tβ̃l,t∑

k∈S(L)
α̃k,tβ̃k,t

, l ∈ S(L), t = 1, . . . , T ; (7)

ξ̃kl,t =
α̃k,tp̃klpX(xt+1;ut+1, θ̃l)β̃l,t+1∑

r∈S(L)

∑
s∈S(L)

α̃r,tp̃rspX(xt+1;ut+1, θ̃s)β̃s,t+1

, k, l ∈ S(L), t = 1, . . . , T − 1; (8)
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α̃l,1 = π̃lpX(x1;u1, θ̃l), α̃l,t =

 ∑
k∈S(L)

α̃k,t−1p̃kl

 pX(xt;ut, θ̃l), t = 2, . . . , T ; (9)

β̃l,T ≡ 1, β̃l,t =
∑

k∈S(L)

p̃lkpX(xt+1;ut+1, θ̃k)β̃k,t+1, t = T − 1, T − 2, . . . , 1. (10)

The proof of the Lemma 1 is based on the method from Bilmes (1998) for Gaussian Mixture
with Markov regime switching.

The representation for estimate φ̂ ∈ <q is obtained by maximization of the conditional ex-
pectation of the log-likelihood function (6) for some given initial value φ̃ ∈ <q, that is:

φ̂ = arg max
φ∈<q

Λ(φ, φ̃) = arg max
φ∈<q

Eφ̃{l(φ; X̄, Ū ,D)|X̄, Ū ; φ̃}, (11)

Theorem 1. If model MS-VARX (3) satisfies the assumptions M.1-M.3, d.2, the estimates
{Π̂l, Σ̂l} (l ∈ S(L)), π̂, P̂ on a sample (X̄, Ū) are the solution of equation (11) for a given
φ̃ ∈ <q:

π̂l = γ̃l,1, p̂kl =

T∑
t=2

ξ̃kl,t

(
T∑
t=2

γ̃k,t−1

)−1
, Π̂l =

T∑
t=1

γ̃l,txtu
′
t

(
T∑
t=1

γ̃l,tutu
′
t

)−1
, (12)

Σ̂l =

T∑
t=1

γ̃l,t(xt − Π̂lzt)(xt − Π̂lzt)
′

(
T∑
t=1

γ̃l,t

)−1
, (13)

where posterior probabilities {γ̃l,t}, {ξ̃kl,t} are described by the formulas (7)–(10).

Proof. Three terms Q1, Q2 and Q3 in the formula (6) depend on the various parameter sets.
Therefore, the optimization problem for Λ(φ, φ̃) can be partitioned into three independent
optimization problem for continuous in the parameters functions where a posterior probabil-
ities {γ̃l,t}, {ξ̃kl,t} are given. To maximize the functions Q1, Q2 with equality constrained we
use the method of Lagrange multipliers. Maximizing the function Q3 of the form

Q3({θl}) =
∑

l∈S(L)

T∑
t=1

γ̃l,t
(
−N

2 ln(2π)− 1
2 ln |Σl| − 1

2(xt −Πlut)
′Σ−1l (xt −Πlut)

)
is carried out separately on matrices Πl and Σl by calculating the derivatives and using
properties of matrices operations (Anderson 1984).

Corollary. Using the known block structure for matrices Π̂l, we can get the estimates
{Âl,1, . . . , Âl,p, B̂l} (l ∈ S(L)).

EM-algorithm for MS-VARX. For joint estimation of all parameters φ ∈ <q and state
vector D ∈ ST (L) the EM MS-VARX-algorithm (Expectation-Maximization algorithm for
MS-VARX ) is addressed. EM MS-VARX-algorithm belongs to the family of Baum – Welch
algorithms of splitting of a mixture of multivariate distributions, controlled by a hidden
Markov chain (Bilmes 1998).

The algorithm includes the following steps (superscript k in brackets indicates the iteration
number).

Preliminary step, that includes: 1) setting the initial values of the parameters: φ(0) ≡ φ̃;

or D(0) = (d
(0)
t )(t = 1, ..., T ); 2) setting the parameters defining the accuracy rate of the

objective function calculation ε (0 < ε << 1) and the maximum number of iterations k̄.

For iteration k (k = 1, 2, . . .):

Step E. Calculation of {γ̃l,t, ξ̃kl,t} by the formulas (7)–(10) assuming φ̃ ≡ φ(k−1). Estimation

of D(k) = (d
(k)
t ) ∈ ST (L) (t = 1, . . . , T} by the decision rule of the maximum a posteriori

probability of the class:
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d
(k)
t = arg max

l∈S(L)

{
γ
(k)
l,t

}
, t = 1, . . . , T. (14)

Step M. Computation of the parameter estimates {Π(k)
l ,Σ

(k)
l } (l ∈ S(L)), π(k), P (k)by the

formulas (12), (13) with using the probability γ
(k−1)
l,t and ξ

(k−1)
ij,t calculated in the Step E.

Checking two stop conditions (Bilmes 1998): 1) k = k̄; 2) l
(k)
X ≥ l

(k−1)
X and

(
l
(k)
X − l

(2)
X

)
<

(1 + ε)
(
l
(k−1)
X − l(2)X

)
, where l

(k)
X = lnP{X̄, Ū |φ(k)} = ln

(∑
l∈S(L) α

(k)
l,T

)
. If one of the condi-

tions is satisfied, we set: φ̂ = φ(k), D̂ = D(k),l̂X = l
(k)
X , γ̂l,t = γ

(k)
l,t , (l ∈ S(L), t = 1, . . . , T ).

In this case, the algorithm terminates, otherwise the algorithm proceeds to Step E.

Convergence problems for this type of algorithms are investigated in numerous studies, par-
ticularly in Krolzig (1997); Malugin (2014). The convergence of the algorithm ensures the
consistence of the resulting parameters estimates φ̂, π̂, P̂ as well as the consistence of the
classification rule (13).

4. Discriminant analysis of the MS-VARX

The decision classification rule of multivariate autoregression observations (X̄, Ū) described by
the MS-VARX model in general case can be defined as:D̂ = (d̂t) = D(X̄, Ū), d̂t = d̂t(X̄, Ū) ∈
S(L), t = 1, . . . , T . The accuracy of classification for this rule is characterized by the proba-
bility of misclassification:

r = r(D(X̄, Ū)) = P{||D̂ −D0|| 6= 0}, ||D −D|| =
T∑
t=1

(1− δd̂t,d0t ), (15)

where D0 = (d0t ) and D̂ = (d̂t) are the true state vector and its estimate respectively.

Assume first all parameters of the MS-VARX (3) to be known. Describe an optimal classifica-
tion rule, called Bayesian decision rules (BDR) (Malugin 2014; Kharin 1996), which minimizes
the probability of misclassification (15). Bayesian decision rules of pointwise and groupwise
classification of multivariate observations described by IS-VARX and IS-MLR models, have
been proposed and studied in Malugin (2014). In the considered case of MS-VARX model
we addressing the groupwise classification decision rule. A similar problem in the case of a
parametric family of continuous probability distributions was considered in Kharin (1996).
To formulate the decision rule we will use the log-likelihood function, which for some fixed
vector D according to (5) simplifies to:

l(φ; X̄, Ū ,D) = ln(L(φ; X̄, Ū ,D)) = lnπd1 +

T∑
t=2

lnpdt−1,dt +
T∑
t=1

lnpX(xt;ut, θdt). (16)

Lemma 2. If model MS-VARX (3) satisfies the assumptions of M.1-M.3, d.2 and the staked
vector of parameters φ ∈ <q is known, BDR of groupwise classification is determined by the
condition

D̂ ≡ D̂(X̄T
1 , Ū

T
1 ) = arg max

D∈ST (L)
l(φ; X̄T

1 , Ū
T
1 , D), (17)

where (X̄T
1 , Ū

T
1 ) (X̄T

1 = (x′1, ..., x
′
T )′ ∈ <NT , ŪT1 = (u′1, . . . , u

′
T
′ ∈ <NpT × ZT ⊆ <(Np+M)T )

is a sample of observations to be classified.

Proof. It is known (Kharin 1996) that the decision rule of the form (17) for arbitrary family
of parametric continuous distributions minimizes a probability of error classification. Such
decision rules are known as Bayesian decision rules. Under the conditions of the Lemma 2
the vector of endogenous variables xt ∈ <N corresponding to fixed values ut ∈ <Np+M and
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dt = l(l ∈ S(L)) has conditional Gaussian distribution with density (4) which belong to the
mentioned above family of parametric continuous distributions.

To solve the integer optimization task (17) for some fixed continuous vector φ ∈ <q(q =
Lm+ (L− 1)(L+ 1)) we will use the dynamic programming method (Kharin 1996; Bellman
and Dreyfus 1962). Its implementation requires a special representation of the log-likelihood
function l(φ; X̄, Ū ,D) through the so-called Bellman functions.

Theorem 2. Under the conditions of Lemma 2, the BDR of groupwise classification of
sample (X̄T

1 , Ū
T
1 ) is implemented using the dynamic programming method in accordance with

the following relationships:

d̂T = arg max
k∈S(L)

FT (k), d̂t = arg max
k∈S(L)

(
ft(k, d̂t+1) + Ft(k)

)
, t = T − 1, T − 2, . . . , 1, (18)

F1(l) ≡ 0, Ft+1(l) = max
k∈S(L)

(ft(k, l) + Ft(k)) , l ∈ S(L), t = 1, . . . , T − 1, (19)

where {Ft(k)} are Bellman functions and {ft(k, l)} are described by formulas

ft(k, l) = δt,1(lnπk + ln pX(x1;u1, θk)) + ln pkl + ln pX(xt+1;ut+1, θl), k, l ∈ S(L), (20)

δt1 — Kronecker symbol, t = 1, . . . , T − 1.

Proof. In conditions of Lemma 2 the formulas (18)–(20) are obtained by means of equivalent
transformation of function l(φ; X̄, Ū ,D). Indeed, on the basis of (16), (17) and (20) we obtain:

D̂ = arg max
D∈ST (L)

T−1∑
t=1

ft(dt, dt+1). (21)

It is known that a dynamic programming procedure includes the following two stages which
use formulas (19) and (18) respectively:

1) recursive calculation of Bellman functions {Ft(l)} (l ∈ S(L), t = 1, ..., T−1) by the formulas

Ft+1(l) = maxk∈S(L) (ft(k, l) + Ft(k)), F1(l) ≡ 0;

2) calculation of vector D̂ components in the reverse order:

d̂t = arg maxk∈S(L)

(
ft(k, d̂t+1) + Ft(k)

)
(t = T − 1, T − 2, ..., 1),

d̂T = arg maxk∈S(L) FT (k).

Since parameters {θl} (l ∈ S(L)), π, P are unknown, we need to use their estimates obtained
from some sample of classified observations. To get such a sample as to find the estimates
{θ̂l} (l ∈ S(L)), π̂, P̂ it is suggested to apply the proposed above EM MS-VARX algorithm.
Thus, the following statement is true.

Corollary. If {θ̂l} (l ∈ S(L)), π̂, P̂ are consistent estimates of parameter for model (3), then
using them in (15)–(17) instead of unknown values of parameters we obtain a consistent
”plug-in” Bayesian decision rule.

The ”plug-in” BDR of group classification can be used to forecast future states of complex
system for a given horizon h ≥ 1 using new out-of-sample observations (X̄T+h

T+1 , Ū
T+h
T+1 ), where

X̄T+h
T+1 = (x′T+1, . . . , x

′
T+h)′ ∈ <Nh, ŪT+hT+1 = (u′T+1, . . . , u

′
T+h)′ ⊆ <(Np+M)h.

5. Performance evaluations

Description of test models and examples. We consider the model MS-VARX in the
form (1) or (3) under the assumptions M.1–M.3, d.2 with cyclic changes in the matrix of
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regression coefficients. The aim of experiments is to evaluate the accuracy of classification
and prediction for the proposed decision rules. We use the following notation for the proposed
classification algorithms for MS-VARX: BDR — Bayesian decision rule of groupwise classifi-
cation algorithms; EBDR — estimated (”plug-in”) BDR algorithms; EM — EM MS-VARX
algorithms.

General description of the test models: L = 2, N = 2, M = 3; A1 = A0, Σ0 = Σ1 = Σ;
T ∈ {100, 200, 500, 1000, 2000}, h = 100. The exogenous vector zt = (ztj) ∈ <M has a
uniform distribution in Z = aM , a = [1, 10] with mean value z̃ = E{z} = (5.5, 5.5, 5.5)′.
Interclass Mahalanobis distance defined for the mean value of the vector of exogenous variables
is denoted by ∆(z̃).

Parameter values for various experiments

Σ0 = Σ1 = Σ =

(
1 0
0 3

)
; B0 =

(
1 2 1
2 0 3

)
, B1 = B0 +H;

B.1. H =

(
0 0 0
−0.5 0 0

)
, B.2. H =

(
0 0 0
−1 1 1

)
, B.3. H =

(
0 0 0
−1 0 −1

)
;

π0 = π1 = 0.5, P =

(
1− ω ω
ω 1− ω

)
(0 < ω < 0.5).

Characteristics of classification and estimation accuracy. The matrix H = B1 − B0 in the
case A1 = A0, Σ0 = Σ1 = Σ determines the degree of distinctiveness of classes, caused by
structural changes in the matrix of regression coefficients. The probability of misclassification
under the model assumptions is calculated according to the formulas (Malugin 2014; Kharin
1996):

r(z̃) = π0r0(z̃) + π1r1(z̃), rl(z̃) = Φ

(
−∆(z̃)

2
− (−1)l

h

∆(z̃)

)
, h = ln

π0
π1

(l ∈ {0, 1}),

where Φ(·) — the function of standard normal distribution, ∆(z̃) — interclass Mahalanobis
distance at point z̃.

The probability of misclassification is calculated by averaging the classification results of

K = 100 random samples for each set of parameters using the formulas r̂ = K−1
K∑
i=1

r̂i, r̂i =

1−T−1
T∑
t=1

δd̂it,d0t
where D0 = (d0t ), D̂

i = (d̂it) — true state vector and its estimate respectively

for the i-th sample.

The accuracy of the parameter estimates is determined by the characteristics δθ = ||θ̂ −
θ||, δP = ||P̂ − P ||, where || · || is the Euclidean norm of the matrix and vector.

Analysis of the results of experiments.

Case 1. The impact of differences in matrix of regression and autoregression coefficients for
different classes. Parameters value (set 1): variants B.1–B.3 for the matrix of regression
coefficients, A1 = A2 = ON×N , ω = 0.2. The estimates of accuracy measures for these
experiments are presented in Table 1.

Table 1: The impact of structural changes in regression coefficients.

Accuracy of classification and estimation algorithms
Variants of matrix B

∆(z̃) r̂BDR r̂EM r̂hEBDR δθ δP
B.1 1.23 0.198 0.294 0.34 0.265 0.28

B.2 2.46 0.097 0.1 0.109 0.191 0.073

B.3 4.919 0.017 0.02 0.018 0.166 0.059
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Parameters values (set 2): variant B.3 for matrix of regression coefficients, ω = 0.2,

A.1. A1 = A0 =

(
0.3 0.2
0.2 0.3

)
; A.2. A0 = A1 =

(
0.6 0
0 0.6

)
(the samematrices);

A.3. A0 = −A1 =

(
0.6 0
0 0.6

)
; A.4. A0 = −A1 =

(
0.9 0
0 0.9

)
(differentmatrices).

The estimates of accuracy measures for these experiments are presented in Table 2.

Table 2: The impact of structural changes in autoregression coefficients.

A.1 A.2 A.3 A.4
T

r̂BDA r̂EM r̂BDA r̂EM r̂BDA r̂EM r̂BDA r̂EM
100 0.0077 0.0787 0.0077 0.0588 0.0013 0.0015 0.0001 0.0049

200 0.0074 0.0128 0.0074 0.0082 0.0012 0.0013 0.0002 0.0002

Conclusion 1. The accuracy of classification depends on the number of parameters, sub-
ject to structural changes and the severity of structural changes; the presence of structural
changes in the matrices of autoregression coefficients leads to a decrease in the probability of
misclassification (compare the values of r̂BDA and r̂EM for the cases A.2. (A0 = A1) and A.4.
(A0 = −A1) in Table 2).

Case 2. The impact of training sample size T on the accuracy of the algorithms. Parameters
value: variant B.2 for the matrix of regression coefficients; T ∈ {100, 200, 500, 1000, 2000},
forecast horizon h = 100. The dependence of the accuracy of classification and prediction on
the size of training sample is illustrated in Figure 1.

Figure 1: The dependence of the accuracy of algorithms on the size of training sample: left
— r̂EM (circles) and r̂hEDA (squares); right — δθ (circles) and δP (squares)

Conclusion 2. There is observed an expected rise in the accuracy of the classification
and estimation algorithms with increasing interclass distance and volume of observations
(Figures 1, 2, Table 1);

Case 3. The effect of uncertainty regarding the class of state on the efficiency of the EM
MS-VARX algorithm. Parameters value: under conditions of Case 2 the uncertainty of state
is described by the parameters ω ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, T = 100. The value ω = 0.1
corresponds to the high degree of certainty, the value ω = 0.5 corresponds to the highest
degree of uncertainty. The dependence of the accuracy of classification and estimation on the
parameter ω is illustrated in Figure 2.
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Figure 2: The effect of uncertainty regarding the class of the EM MS-VARX algorithm
(columns from left to the right): interclass distance ∆(z̃); estimate of the probability of
misclassification r̂EM ; characteristics of parameters estimation accuracy δθ

Conclusion 3. The increasing degree of uncertainty regarding the state of the system have
the following effects for the EM MS-VARX and EDBR algorithms: interclass distance de-
creases and the probability of misclassification falls significantly (compare the values of r̂EM
for the cases ω = 0.1 and ω = 0.5 in Figure 2). This indicates the feasibility of using in these
cases the IS MS-VARX algorithm (Malugin 2014) for independent classes of states.
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