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Abstract

Concept of data depth provides one possible approach to the analysis of multivariate
data. Among other it can be also used for classification purposes. The present paper is
an overview of the research in the field of depth-based classification for multivariate data.
It provides a short summary of current state of knowledge in the field of depth-based
classification followed by detailed discussion of four main directions in the depth-based
classification, namely semiparametric depth-based classifiers, maximal depth classifier,
(maximal depth) classifiers which use local depth functions and finally advanced depth-
based classifiers. We do not restrict our attention only on proposed classifiers. The paper
rather aims to overview the ideas connected with depth-based classification and problems
that were discussed in this context.
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1. Introduction

Depth function is basically any function which provides ordering (or quasi-ordering) of points
in multidimensional space R? with respect to some probability measure P defined on this
space. Existence of ordering enables generalization of quantiles (median, in special case) and
related nonparametric techniques proposed for univariate variables. Thus the notion of depth
creates one possible basis of nonparametric multivariate data analysis.

Data depth has been also applied in classification. We use the term classification, where
sometimes term discriminant analysis or supervised learning is used. The aim of classification
is to create a rule for allocation of new observations into one of two (or more) groups. Formally,
we consider two unknown absolutely continuous probability distributions P; and P, on R%,
Independent random samples from these distributions are available. Together they constitute
so called training set. Empirical distributions based on the training set are denoted 131 and
Py. A classifier (rule for classification) is thus a function ¢ : R4 — {1,2}. The theory can be
generalized for more than two groups.

Possibility to use data depth for classification was firstly mentioned by Liu already in 1990,
Liu (1990). She suggested that the new observation “should be assigned to the population
whose training sample leads to a smaller relative rank for it.” However, after this first reference
it lasted more than ten years until the depth-based classifiers started to be studied systemat-
ically. Thus we can say that the depth-based classification has been developed since 2000.
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The aim of the present paper is to summarize main ideas how the depth can be used in
classification. The paper renders readers interested in classification insight to the current
state of knowledge in the field of depth-based classification. Also it provides a comprehensive
overview of the research made in the area of depth-based classification in the last 15 years.

2. Short guide on depth-based classification

The reader not familiar with the depth-based classification might ask in which situation it
was useful to use this concept. In order to facilitate the basic orientation in this area we
shortly summarize current state of knowledge in the field of depth-based classification. We
do it even before dealing with particular methods of depth-based classification since it might
be useful for the reader to know what to expect from the depth-based classification as soon
as possible.

e The depth-based classifiers are applicable when one want to avoid strict parametric as-
sumptions (like normality) on the considered distributions. They can utilize possible
global properties of the considered distributions (like their symmetry), but can be ap-
plied even if there are no such properties, e.g. for non-symmetric distributions. They
work well for unimodal distributions since the depth is global property which charac-
terizes location of a point w.r.t. the whole distribution. If the considered distributions
might be multimodal or could have nonconvex levelsets of density a local depth should
be used to overcome this problem.

e Simple advice how to decide weather it is reasonable to use depth-based classification is
to answer the question weather it is reasonable to classify by median and other quantiles.
The median which is the point with highest depth might lie in the area where the density
is low. In such a case depth-based classifiers would have problems. Only few of them
are able to overcome these problems.

e Depth-based classifiers were primarily constructed for continuous distributions, little
attention was paid for categorical “explanatory” variables.

e One should be aware that the computation of depth is not easy task and for most of the
depth functions might be very slow in dimensions higher than five when the number of
points in training set is high. The depth-based procedures are advisable in dimensions
from 2 to 5, they are not advisable in dimensions higher than 20. However, the latest
depth-based classifiers, as the one proposed by Dutta and Ghosh (2015), were shown to
perform well even in dimension 100. For really high-dimensional data the depth-based
classifiers usually need to be preceded by reduction of dimensionality.

e When more than two classes are considered, the depth-based classifiers usually rely on
majority voting principle.

e The main advantage of the depth-based classifiers is their affine invariance. Most of
the depth functions are affine invariant and thus the classification procedures do not
change e.g. with the change of units (scales). The depth-based classifiers also usually
have good robust properties.

e The simplest classifiers, so called maximal depth classifiers, which will be described in
section 4.2 are not satisfactory in most practical situations. More complicated classifiers
described in section 4.4 need to be employed. Probably the most universal depth-based
classifier is that by Paindaveine and Van Bever (2015) (see end of the section 4.4) since
it is shown to be nonparametrically consistent under very mild conditions.

e For practitioners who need reliable implemented classifiers an R-package ddalpha is
advisable, see Pokotylo, Mozharovskyi, and Dyckerhoff (2016). In this package the DD-
plot classifier by Li, Cuesta-Albertos, and Liu (2012) and the DDa-classifier by Lange,
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Mosler, and Mozharovskyi (2014b) are implemented. Both these classifiers (mentioned
in section 4.4) belong to the best depth-based classifiers that are currently available.

e There are also depth-based methods for classification of functional data. They utilize so
called functional data depth. The current paper deals with classification for multivariate
data so the classification of functional data is not included.

3. Concept of data depth

There are several depth functions commonly used for classification — halfspace depth, projec-
tion depth, spatial depth, Mahalanobis depth, zonoid depth, and some others. Let us recall
here the first four of the depth functions listed above:

e The halfspace depth of a point & in R? with respect to a probability measure P is defined
as the minimum probability mass carried by any closed halfspace containing x, that is

D(x, P) = inf {P(H) : H a closed halfspace in R? : & € IHI} :

e The projection depth of a point x in R? with respect to a probability measure P is
defined as
'z — g,

where O(x,P) = sup ——*,

D(z,P)=— |
(= P) 14+ O(z, P) lul=1  OPu

where pp, is some location and op, is some scale measure of distribution of random
variable ©'X (X ~ P), usually pp, = median(u’'X) and op, = MAD(u'X), where
MAD stands for median absolute deviation.

e The Mahalanobis depth of a point & in R¢ with respect to a probability measure P with
mean g and variance matrix 3 is defined as

D(x,P) = where O(x,P) = (x — pu)S Hx — p).

1
14 O(z, P)’

e The spatial depth (also called L;-depth) of a point & in R? with respect to a probability
measure P with variance matrix X is defined as

D(xz,P)=1—FEp

All the depth functions listed above have desirable properties like affine invariance, maximality
at a point of symmetry (if the distribution is symmetric in some sense, e.g. angularly),
monotonicity on rays from the point with the maximal depth — so called deepest point, which
can be considered as multivariate analogy to median.

The very important difference among the considered depth functions consists in different
behaviour of their empirical versions. While the empirical halfspace depth is equal to zero
for any point which lies outside of the convex hull of the data, the empirical versions of the
latter three depth functions are nonzero everywhere.

The depth of a point is a characteristic of the point specifying its centrality or outlyingness
with respect to the considered distribution. Since the whole distribution is considered, the
depth is said to be a “global” characteristic of the point. However, in recent years there have
been attempts to “localize” depth. Later we will discuss importance of these attempts for
classification purposes.
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4. Depth-based classifiers

We can distinguished four main groups of depth-based classifiers for multidimensional data:
semiparametric classifiers which use data depth, maximal depth classifier which use global
depth functions, maximal depth classifiers which use local depth functions and “advanced”
depth-based classifiers.

4.1.

Semiparametric depth-based classifiers

e The first thorough study devoted to possible use of data depth in context of classifi-

4.2.

cation entitled “Measuring overlap in binary regression” was done by Christmann and
Rousseeuw (2001). The authors considered classical logistic regression model in which
the 0-1 response variable coded group membership in two classes classification problem.
They realized that the regression depth can be used to measure amount of separation
between the two groups. Enumeration of the regression depth of one particular ‘fit’ is
accompanied by finding the hyperplane which minimizes number of misclassified points
from the training set. Similar ideas can be found also in Christmann, Fischer, and
Joachims (2002) and Christmann (2006).

Ghosh and Chaudhuri extended substantially the above mentioned ideas, see Ghosh and
Chaudhuri (2005a). They came with the following extensions: (1) They found connec-
tion of the linear classification with the halfspace depth (“the estimated linear projection
is orthogonal to the hyperplane, which defines the halfspace depth of the origin w.r.t.
the data cloud formed by the differences x1; — x2; in the d-dimensional space”, where
x1; are observations from one group and xy; from the other). (2) They suggested use of
weighed regression depth in linear classification based on regression depth to deal with
the situation in which prior probabilities are not proportional to their training sample
sizes. (3) They generalized the classifiers for nonlinear separating surfaces. To construct
such surfaces they projected the original d-dimensional observations @; into a higher-
dimensional space of features z; = (f1(x;),..., fa(x;)), where fi(-),..., fn(-) are some
given functions, e.g. powers, and performed linear classification on that h-dimensional
space. In this way they could obtained e.g. quadratic classification. Similar idea, but in
slightly different context can be found in Lange et al. (2014b). (4) They discussed the
problem of more than two groups. They proposed majority voting or pairwise coupling.

Maximal depth classifier

The simplest depth-based classifier is so called maximal depth classifier. The points close
to the centre (multivariate median) of some distribution have high depth with respect
to this distribution and it seems to be natural to classify them to this distribution. The
idea of the maximal depth classifier — to classify a new observation to the group where
its depth is maximal — is thus in accordance to common sense:

c(a) = arg max D(; P;) (1)
Different authors advocated use of different depth functions in this classifier. As far as
we know this classifier was first studied by Jornsten (2004). She used spatial depth,
similarly as Hartikainen and Oja (2006). Jornsten also came with the idea of rel-
ative depth which measures uncertainty of classification of a given point. The rel-
ative depth is defined as difference between maximal and second highest depth, i.e.
max; D(x; ﬁl) —MaX; o) D(; f’l) If the difference is high we are pretty sure in classi-
fication. Small relative depth indicates possible problems in the class assignment. Jorn-
sten suggested deletion of points with small relative depth from the training sample



Austrian Journal of Statistics

which might lead to improvement in classification. The classifier proposed by Jérnsten
was used in comparative study focused on classifiers for high-dimensional data pre-
sented in Hall, Titterington, and Xue (2009). However, this study highlighted rather
componentwise median-based classifier and its truncated form.

Mosler and Hoberg were first who pointed out so called “outsider” problem in Mosler and
Hoberg (2006). The problem consists in zero empirical depth of points that are outside
of the convex hull of points in the training set when using some depth functions like
zonoid depth or halfspace depth. To overcome the outsider problem they suggested to
combine zonoid depth with Mahalanobis depth which does not suffer from this problem.

Use of projection depth in the maximal depth classifier was advocated by Kosiorowski
(2008) who emphasized good robust properties of such a classifier. Also the classifier
proposed by Hubert and Van der Veeken (2010b) can be understand as the maximal
depth classifier using projection depth where the outlyingness adjusted for skewness
of the distribution is used instead of commonly used outlyingness. Similarly as Jorn-
sten they consider removal of the possible problematic points from the training set
before the construction of the final classifier. Their contribution can be viewed also in
(rather exceptional) discussion of depth-based classification for high-dimensional data.
They advocated use of robust SIMCA (Soft Independent Modelling by Class Analogy)
method which lies in application of (robust) PCA method in each group. An extended
projection depth which takes into account possible difference in dispersion of considered
distributions was suggested by Cui, Lin, and Yang (2008).

An interesting technical application of maximal depth classifier for real time sensor node
tracking and location was recently proposed in Kumar, Kumar, Kumar, and Hegde
(2015). Specificity of this classifier lies in the fact that not one point, but the group of
multidimensional points is classified at once.

e Although many authors suggesting maximal depth classifier refered to the original paper
by Liu (1990), the idea presented in that paper was to classify rather according to the
relative rank (based on depth), not the depth itself (see section 1). This idea was
rediscovered much later by Billor, Abebe, Turkmen, and Nudurupati (2008). Although
they call their classifier as “depth transvariation classifier”; it can be called more directly
maximal rank classifier since it has the following form:

c(x) = arg max rank(x; B), (2)

1=1,2

where rank(x; ]31) denotes percentage of points from the training set of the i-th group
which have smaller depth w.r.t. ;. The same idea was also considered by Hubert and
Van der Veeken (2010a).

The maximal depth classifiers mentioned in this section are already outdated and were re-
placed by maximal depth classifiers that use some local depth described in section 4.3 or by
more advanced classifiers described in section 4.4. Insufficiency of the maximal depth classi-
fiers was revealed already by Ghosh and Chaudhuri (2005b). They proved that the maximal
depth classifier attains minimal possible probability of misclassification (known as Bayes risk)
only in very special cases — they showed optimality when the considered distributions are
elliptically symmetric with the density decreasing from the centre, differing only in location
and having equal prior probabilities. The optimality is lost even if only one of these assump-
tions is not fulfilled. The following simple example illustrates these problems. Let us consider
two one-dimensional normal distributions with the same mean but different variances. Then
all points different from the mean will be classified to the distribution with smaller variance.
This is due to the affine invariance of the depth.
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4.3. Maximal depth classifiers with local depth

The depth of a given point characterizes its location w.r.t. the whole distribution. Thus the
classifiers which use any “global” depth function perform well only if the considered distribu-
tions have some global properties like symmetry or unimodality. To obtain good performance
also in more general settings, for example in the case of multimodality or nonconvexity of
levelsets of density, use of some local depth started to be promoted recently. A new problem
that emerged and need to be handle is choice of localization level.

The first classifiers which employed local depth appeared only in 2013. Hlubinka and Vencalek
(2013) used weighted halfspace depth. Paindaveine and Van Bever (2013) developed more
complex approach which enables localization of any “global” depth function which can be
subsequently used in the maximal depth classifier. The proposed local depth is defined as
global depth conditional on some neighborhood of the point of interest. The neighborhood
itself is defined in terms of data depth. It is worthwhile to recall the main ideas leading to
the localization of depth here:

Let PX be a probability distribution of a d-dimensional random variable X, let D(-, PX)
be any depth function and let 8 € (0,1]. Depth regions of a distribution PX are sets of the
following form: {:c € R?: D(z, PX) > a}. The symmetrized version of a distribution PX
with the centre in a given point & € R? is defined as a mixture P, = %PX + %PQ”C*X. The
probability 8 neighborhood of a point & € R® w.r.t. PX is defined as the smallest depth region
of P, with P, probability larger than or equal to 3. It is denoted by R?(P.). The S-local
depth of a point & € R? w.r.t. PX is defined as D(zx, ps ), where P2 is conditional distribution

of PX conditional on depth neighborhood of x R®(P,).

An interesting economical application of maximal depth classifier which uses local LP depth
for so called algorithmic trading was presented by Kosiorowski, Bocian, and Bujak (2014).
The classes considered in the paper characterize different states of market.

4.4. Advanced depth-based classifiers

The paper by Ghosh and Chaudhuri (2005b) uncovered insufficiency of the maximal depth
classifier and started the search for depth-based classifiers which would be applicable in a
broad class of distributional settings. Typical depth-based classifier can be described as a
two-steps procedure:

1. The first step consists in computation of depths of the new observation x with respect
to both parts of the training set. Each point is characterized by a pair of depths, these
pairs lies in so called DD-space (depth-versus-depth space). Typically the DD-space is
subset of [0,1] x [0,1] C R? and thus the first step can be usually (but not necessarily)
considered as reduction of dimensionality — from R¢ to the compact subset of R?. This
step is connected with the question “Which depth function should be used?”

2. The second step consists in application of some classification procedure in the DD-
space. This step is connected with the question “Which classification procedure should
be applied in the DD-space?” This “new” question is in the center of current research
in the field of depth-based classification.

The scheme of typical depth-based classification procedure is shown in Figure 1.

depth D(-, P),i=1,2 classifier ¢(-)
R4 ) [0,1]2 1,2}

Figure 1: Scheme of typical advanced depth-based classifier.

The difference among the classifiers proposed in literature consists mainly in different answers
to the two questions connected with the two steps — different depth functions can be applied in
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the first step and different classification procedures can be applied in the second step. Depth
function used in the first step can be either global or local. Also procedures that are applied
in the DD-space can be also either “global” or “local” in nature. As the global we denote the
procedures that take into account all points of the training set when constructing the classifier
while the local procedures take into account only points of the training set close to the point
which is classified.

The list of advanced depth-based classifiers follows:

e The first classifier which overcame insufficiency of the maximal depth classifier was sug-
gested already by Ghosh and Chaudhuri (2005b). They discovered that in the case of
elliptically symmetric distribution the classifier which minimizes probability of misclas-
sification can be expressed as

c(x) = arg max mi0;(D(z, ]31)),

where 7; are prior probabilities and 6;,7 = 1,2 are some unknown real functions. This
holds due to the correspondence between depth and density in case of elliptically sym-
metric distributions. They found explicit formula for the 8;(D(x, P;)), when the halspace
depth is used. Later Dutta and Ghosh (2012) found similar formula also for the projec-
tion depth. The classifiers which utilize these relations have the following form:

clw) = argmaxkipi((HD(w, P))/w(HD(w, P)),

o(@) = argmaxk;p;(PD(w,F))- PD(z, P)" /(1 - PD(z, P;))*",

where the first classifier uses halfspace depth H D while the second classifier uses pro-
jection depth PD, k; (k! respectively) are unknown constants estimated by minimizing
misclassification rate, v;(HD(z, P;)) denotes Mahalanobis distance whose relation to
the halfspace depth is known, and finally p; (p} respectively) are unknown functions
that need to be estimated by kernel density estimation technique. Here it is useful to
note that the density that need to be estimated is always one-dimensional.

e The previously mentioned classifiers are optimal if the considered distributions are
lo-symmetric (after standardization). However, their authors have shown that for
any l,-symmetric distribution with p # 2 the density cannot be a function of halfs-
pace depth. Dutta and Ghosh (2016) suggested to use L, depth (D(z,P) = 1/(1 +

|= 2@ -

tion P) to overcome this problem and obtain classifier optimal for a broader class of
l,-symmetric distributions. They used relationship between depth and density in this
case to estimate the density from the depth by one-dimensional kernel density estima-
tion. The choice of p had to be discussed. The authors proposed restricted maximal
likelihood estimate and discussed further how the restriction should be made.

‘ ), where p and X are location and scale parameters of the distribu-
p

e Another interesting classifier was proposed by Dutta and Ghosh (2015). They first
transform the original data to the DD-space using spatial or localized spatial depth.
Subsequently they use these depths as explanatory variables in multinomial additive
logistic regression model (a spacial case of generalized additive models, called GAMs)
where the response variable indicates group membership (class labels). Degree of local-
ization determined by a single parameter h of locality is object of interest. The authors
suggest “multiscale approach” in which the final classifier is based on weighted average of
posterior probabilities estimated with different values of the parameter h. The weights
are based on estimated misclassification rates. As mentioned already in section 2, this
classifier was tested for high-dimensional data and demonstrated its good properties in
this settings.
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e The DD-plot classifier proposed by Li et al. (2012) works also in two steps. The first

is transformation of the data into DD-space (depth versus depth). Visualization of the
DD-space is by means of so called DD-plot. This step is followed by separating the
transformed data points by a curve from a given family, for example by a polynom. The
separation is done in a way which minimizes number of errors when classifying points
from the training set. The classifier thus has the following form:

~

c(x) = arg max r(D(x, F)),

where r is a function from a given class of functions (e.g. polynoms). In the simplest
case the points might be separated by the straight line going through origin (which
represents points with zero empirical depth to each group, so called outsiders). The
only parameter that need to be estimated here (by minimizing average error rate on
training set) is the slope of the line. In a special case we obtain maximal depth classifier
which corresponds to the 45 degree line.

The idea to separate classes by straight line going from the origin in the DD-space was
proposed already by Jin and Cui (2010). Unfortunately, their paper remains unnoticed
so far. They suggested (and subsequently used) new notion of depth, which is defined
as D.(x) = D(cx + (1 — c)u, P), where D is some well known depth function and
¢ > 0 is a tuning parameter. Apart from the slope of the line this parameter need
to be estimated. For a given tuning parameter c the slope b is estimated to make
probability of misclassification rate in the first group smaller than a given small o €
(0,1), i.e. Py(D(z, P,) > bD(x, P2)) > 1 — . The parameter ¢ is then tuned to make
the misclassification rate in the second group as small as possible. Different notions of
depth can be used to further minimize this misclassification rate.

The DD-alpha procedure proposed by Lange et al. (2014b) belongs to the best currently
available depth-based classifiers. Instead of the pair [D(x, P,), D(x, P;)], it works with
a higher-dimensional vector of “features”. Such a vector might be like this:

z = [D(z, P,), D(x, P;), D(z, P,) - D(z, P5), D(x, P,)?, D(z, P5)?.

Note that the the particular features always have the form of product D(:c,ﬁl)kl .
D(x, ﬁz)kQ, where in the pravious example k1 + ko < 2, but in general higher powers
can be used as well. Linear separation (by a hyperplane) in the feature space leads
in general to nonlinear separation in the DD-space. Lange et al. proposed a heuristic
for finding proper parameters which specify separating hyperplane given by the equa-
tion aD(z, P) + bD(x, Py) + cD(x, P)D(x, P,) + dD(x, P,)? + eD(x, P;)? = 0. The
procedure was successfully tested on many real datasets leading usually to low misclas-
sification rates, see Mozharovskyi, Mosler, and Lange (2015). The procedure which is
very fast and robust was implemented in the R-package ddalpha, see Pokotylo et al.
(2016). Several depth functions are implemented in this package. The choice of proper
depth function was discussed in Lange, Mosler, and Mozharovskyi (2014a). The research
on DD-alpha procedure is nicely summarized in Mozharovskyi (2015).

The k-depth-nearest neighbour classifier highlighted by Vencalek (2013) is quite simple
— it uses the well known k-nearest neighbour procedure in the DD-space. The question
is which metric should be used to measure distances between distinct points.

A classifier which uses a specific local depth was suggested by Pokotylo and Mosler
(2016). Instead of term “DD-plot” used by Li et al. (2012) they use term “pot-pot plot”,
where pot-pot is a shortcut for potential versus potential. The potential of a class in a
given point is defined as a kernel density estimate in this point multiplied by the class’s
prior probability. Proper choice of kernel can make the potential be affine invariant and
thus it can be viewed as a local depth. Any of previously mentioned classifiers can be
applied in the pot-pot plot.
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e The transformation used in the first step of advanced depth-based classifier does not
have to be directly transformation to the DD-space. Hubert, Rousseeuw, and Segaert
(2015) suggested transformation to the distance-distance space. The considered distance
is so called bagdistance which is based on (halfspace) depth. The bagdistance of a point
x € R? w.r.t. distribution P is given by the ratio of the Euclidean distance of x to
the multivariate median @ and the Euclidean distance of a point ¢(x) to 8, where ¢(x)
is defined as the intersection of the boundary of so call “bag” and a ray from the 6
through @. The bag is the smallest depth region (for definition see section 4.3) with at
least 50% probability mass. The ratio is not defined in 8, where the distance is defined
additionally to be zero. In the distance-distance space they proposed to use k-nearest
neighbour method, however any other classifier mentioned in this section can be used
as well.

e There are two depth-based advanced classifiers that does not follow the scheme pre-
sented in Figure 1. Although they are different they both can be called k-depth nearest
neighbours (k-depthNN) method.

The first one was proposed by Vencalek (2011). The classifier was based on assumption
that there exists a function which relates depth and density function. This assumption
holds true for elliptically symmetric distributions. In other cases localization of depth
might be used to bring the depth closer to density. Vencalek defined distributional
neighbourhood of a given point € R% as a set of points whose depth w.r.t. a given
distribution P does not differ from D(x, P) of more that a given € > 0. In analogy to
classical kNN he considered points in neigbouhoods of @ that contain a fixed number
(k) of points. Since there are two distributions, there are also two such distributional
neighbourhoods. Vencalek suggested to classify a new observation to the group with the
smallest (in the sense of Lebesgue measure) distributional neighbourhood. The main
practical problem of the procedure is computation (estimation) of Lebesgue measures
of the distributional neighbourhoods.

Maybe the most promising depth-based classifier is that by Paindaveine and Van Bever
(2015). They used the idea of symmetrization: any given point & € R? is in the cen-
tre of the equal mixture of original distribution PX and its reflection P?*=X (see also
section 4.3) and thus it is the deepest point w.r.t. this mixture. The points from the
original training set can be ordered according to their depth w.r.t. this symmetrized
distribution. Then k points with the highest depth form closest distributional neigh-
bours of the point . The point is assigned to the group with the highest number
of representatives among the k nearest neighbours. The procedure was shown to be
“nonparametrically consistent” (which is just a little bit weaker property than univer-
sal consistency). The main practical disadvantage might be viewed in large number of
computation needed to classify a single point.

5. Conclusion

The data depth provides basis for nonparametric inference on multidimensional data. Pos-
sibility of its use in classification has been investigated for more than 15 years. Although
one can expect broad applicability of the nonparametric depth-based classifiers the optimal-
ity of many proposed classifiers can be guaranteed only under some restrictive assumptions.
Global depth functions and global classification techniques applied on the DD-space lead to
good results only if the considered distributions have some global properties like unimodality.
In more general settings localization is needed — one can use local depth functions or local
classifiers used in the DD-space. Simple classifiers like maximal depth classifier have been
already overcome. The DD-plot classifier by Li et al. (2012), DD-alpha classifier by Lange
et al. (2014b) (both implemented in the R-package ddalpha) and classifiers based on sym-
metrization proposed in Paindaveine and Van Bever (2015) and Paindaveine and Van Bever
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(2013) belong to the currently top depth-based classifiers. Interesting new ways how to use
depth in the context of classification like the one proposed in Gilad-Bachrach and Burges
(2013) continue to appear.
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