
AJS

Austrian Journal of Statistics
June 2018, Volume 47, 40–62.

http://www.ajs.or.at/

doi:10.17713/ajs.v47i3.752

Statistical Inferences of Type-II Progressively

Hybrid Censored Fuzzy Data with Rayleigh

Distribution

Ankita Chaturvedi
Banaras Hindu University

Sanjay Kumar Singh
Banaras Hindu University

Umesh Singh
Banaras Hindu University

Abstract

This article presents the procedures of parameter estimation based on Type-II progres-
sively hybrid censored fuzzy lifetime data. Classical as well as the Bayesian procedures
for the estimation of unknown model parameters has been developed. For this purpose
we have considered the problem of point estimation of the parameter of Rayleigh distribu-
tion. The estimators obtained here are Maximum likelihood (ML) estimator, Method of
moments (MM) estimator, Computational approach (CA) estimator and Bayes estimator.
Highest posterior density (HPD) credible intervals of the unknown parameter are obtained
by using Markov Chain Monte Carlo (MCMC) technique. For numerical illustration, a
real data set has been considered.

Keywords: Type-II progressive hybrid censoring, fuzzy lifetime data, Rayleigh distribution,
maximum likelihood (ML) estimator, method of moments (MM) estimator, computational
approach (CA) estimator.

1. Introduction

In a life testing and reliability experiment, several items are put on test and the experiment
is terminated when all of them fail to work. This process is often very time-consuming and
costly. Besides this, situations do arise when one cannot observe the complete life time of all
the items put on test. For example, units may be taken out of the study before completion of
experiment because it is damaged due to some reasons or lack of money compels to terminate
the experiment prior to its completion. Data obtained from such experiments are called
censored data because in such cases one is not completely ignorant about the lifetime of the
censored items, in the sense that a partial information about their lifetime is known. The
scheme of taking out items from the experiment is called censoring scheme. The censoring
schemes arise either in a natural way in life test experiments or deliberately implemented in
the experiment due to the various constraints imposed on the experimentation. In present
day scenario, censoring is a need to reduce total time and cost associated with the life-testing
experiment.

Various censoring schemes are available in the literature to cope up with the need of the
investigator and constraints on the experiment. Each of them has their own merits and de-
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merits. A situation which is often met in some of the life testing experiment, particularly
in those experiments where costly items are put to test, is that units are removed from the
experiment before the final termination of the experiment i.e. removal of items are allowed
prior to completion of the experiment and such type of scheme is known as progressive cen-
soring scheme. A censoring scheme which is getting extremely popular nowadays is Type-II
progressive censoring scheme. It was introduced by Cohen (1965). Since then, many authors
including Cohen and Norgaard (1977), Davis and Feldstein (1979), Viveros and Balakrish-
nan (1994), Balakrishnan and Sandhu (1995), Krishna and Kumar (2013), Singh, Singh, and
Kumar (2013) have discussed the estimation procedures and applications of progressive cen-
sored sample for various lifetime models. An extensive review of the literature on progressive
censoring can be seen from Balakrishnan and Aggarwala (2000) and Balakrishnan (2007).
This censoring scheme allows removals within Type-II censoring scheme in the following way.
Suppose n items are put simultaneously on test at time t = 0 and it is decided to observe
complete lifetime of exactly m(< n) items. In addition to it, m other integers R1, R2, . . . , Rm
such that R1+R2+· · ·+Rm+m = n are also specified with the purpose that at the time of the
first failure, R1 items will be randomly removed from the experiment and the experiment will
continue with the remaining (n−R1 − 1) items. Similarly, at the time of the second failure,
R2 items will be randomly removed from the experiment. This process will be repeated at
each failure and finally, at the time of mth failure all of the surviving items (i.e. Rm items)
will be removed from the experiment.

Nowadays, high-quality items are being produced due to advancement in the technology
hence a major criticism being faced by Type-II progressive censoring scheme is regarding the
total time and cost (which may be very large) associated with such life-testing experiment.
Keeping this point in mind, Kundu and Joarder (2006) proposed a new censoring scheme
which is a mixture of hybrid and Type-II progressive censoring schemes and named it as
Type-II progressive hybrid censoring which ensures that the experiment time can not exceed
a prefixed time T ; see also Childs, Chandrasekar, and Balakrishnan (2008), Kundu (2007),
Kundu, Joarder, and Krishna (2009).

It is important to note here that most of the statistical procedures mentioned above are
developed considering that all the observations are available in most precise form. But in real
life situations, it is not always possible to obtain the experimental observations in precise form
due to experimental errors, human errors, precision of measurement and several other practical
difficulties. Such type of imprecision in the data may creep in due to linguistic descriptions
also; see Zadeh (1975). For example, if we want to know failure time of an item in survival
analysis it may be reported as “approximately between 99 hours to 101 hours”, “about 100
hours” etc. In life testing and reliability problems, the variable of interest is continuous, while
in the process of data collection, we consider that all measurements are in precise numbers
which looks illogical in the sense that it is impractical to record an observation of a continuous
variable in precise number. In this way, some error is incorporated in the observed data during
the measurement and hence make these imprecise. For example, suppose exact failure time
of an item in survival analysis is reported as 100 hours. It can be argued that no value can
be measured as absolutely 100. There will be always a difference between true and reported
value and hence the reported value is an approximate value. In fact, it corresponds to any
value, between 99 hours to 101 hours i.e. more than 99 hours but less than 101 hours. To
deal with such type of imprecise data, which arises due to linguistic variability and error in
measurement; classical estimation methods are not appropriate. However, imprecision in the
data can be easily encoded with the help of fuzzy numbers and then fuzzy set theory provides
an appropriate tool to quantify the uncertainty due to such ambiguities.

From the above discussion, it is clear that the idea of formulation of measurement error in
terms of fuzzy set theory looks more reasonable because it takes care of the imprecision and
uncertainty of observations as well as flexibility in truth values. The fuzzy approach relates
to a grade of membership between [0,1], defined in terms of the membership function of
a fuzzy number and in a fuzzy set transition from false to true is gradual. On the other
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hand, conventional crisp sets (absolute true values) are defined by either membership or non-
membership and there is a sharp distinction or boundary between members and non-members
of the set. Hence, fuzzy set modifies the classical notion of binary membership of crisp set to
represent the uncertainty in data, a brief description of which is given below:

Theory of fuzzy sets was introduced by Zadeh (1965) and the Membership functions (MFs)
form the base of fuzzy set theory. The membership function (MF) of a fuzzy set is nothing
but the generalization of the indicator function in classical crisp sets hence we can graphically
represent a fuzzy set with the help of its MF. The degree to which an object belongs to a
fuzzy set is denoted by a membership value between 0 and 1. Hence, MF associated with a
given fuzzy set maps an input value to its appropriate membership value. In mathematical
terminology a fuzzy number is a subset (say A), denoted by Ã, of the set of real numbers
R and is characterized by membership function ξ

Ã
(x) which associates with each point in

A, a real number in interval [0,1], with the value of ξ
Ã

(x) at x representing the grade of
membership of x in A.

A priori information about the object under study is applied in form of MF to increase the
accuracy. We are using MFs to code the observed data which is not in complex functional form
hence use of complex functions do not add more precision. Therefore simple functions having
natural interpretation are used to define a MF. In fact, the shapes of MFs are important for a
particular problem since they have significant effect on a fuzzy inference system. The shapes
of MFs may be taken as triangular, trapezoidal, Gaussian, etc. depending upon the nature of
data. For any fuzzy number Ã there exist four numbers a1, a2, a3, a4 ∈ R and two functions
β
Ã

(x), γ
Ã

(x) : R −→ [0, 1], where β
Ã

(x) is non-decreasing and γ
Ã

(x) is non-increasing, such
that we can describe a membership function ξ

Ã
(x) in the following manner:

ξ
Ã

(x) =



0 if x < a1

β
Ã

(x) if a1 ≤ x < a2

1 if a2 ≤ x < a3

γ
Ã

(x) if a3 ≤ x < a4

0 if a4 < x

Most common fuzzy number is the “trapezoidal fuzzy number” whose both sides are linear. It
is used to encode data such as “more or less between 99 and 100” or “approximately between
99 and 100”. “Triangular fuzzy number” is a trapezoidal fuzzy number for which (a2=a3) and
it is used to encode data such as “about 100” and “more or less 100”. Similarly Triangular
fuzzy numbers with only right side or left side is useful for situations such as “just before 100”
or “just after 100” for which (a2 = a3 = a4) and (a1 = a2 = a3) respectively. If a1 = a2
and a3 = a4, then we get the rectangular fuzzy numbers, which may represent expressions
such as, e.g. “between 99 and 101”. In the case of a1 = a2 = a3 = a4 = a we get a crisp
number, i.e. a fuzzy number which is no longer vague but represents a precise value that can
be identified with the proper real number a.

For further details about crisp and fuzzy sets see; Dubois (1980), Dubois and Prade (1998),
Klir and Yuan (1995), Zimmermann (2000), Viertl (2011). Probability measure for fuzzy
events was discussed by Zadeh (1968). Singpurwalla and Booker (2004) discussed member-
ship functions and probability measure of fuzzy sets. Viertl (2009) have considered generalized
parametric procedures for reliability characteristic including fuzzy point estimators and gen-
eralized Bayesian procedures. Huang, Zuo, and Sun (2006), Liu (2012), Cai (2012), Shafiq
and Viertl (2015, 2017) have also discussed estimation of survival function and Hazard rate.
Liu and Li (2012) have discussed two types of estimators for cumulative distribution function
(CDF) based on fuzzy data. Recently Pak, Parham, and Saraj (2013a) discussed various clas-
sical and Bayesian methods of estimation for Weibull distribution when data is available in
the form of fuzzy numbers. Also, Pak, Parham, and Saraj (2013b) proposed a new method to
determine the maximum likelihood estimate of the scale parameter of a Rayleigh distribution
under doubly Type-II censored sample from fuzzy data and Pak, Parham, and Saraj (2014)
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discussed inferences for the Rayleigh distribution based on progressive Type-II fuzzy censored
data.

In the present article, we are assuming that we have only vague knowledge of the observed
values of the variable because accurate measurement of variable is not possible, i.e. the
investigator can provide only approximate lifetimes of the items as guess values only by
specifying that the exact value lies in a small interval around the noted observed value. The
interval is to formed by the investigator according to his belief in various value of the interval.
For example, suppose that the least count of the measurement is 2h units, then the interval can
be formed by adding and subtracting h, from the noted observed lifetime of unit. Naturally,
the value of the factor h will vary from problem to problem depending upon its nature and
extent of error in the observed data.

The objective of the present study is to discuss various methods of parameter estimation
under Type-II progressive hybrid censoring scheme when the observations are provided in the
form of fuzzy numbers. For this purpose, we have considered the problem of point estimation
of the parameter of Rayleigh distribution since it is a popular model being used in different
branches of science and engineering. It is frequently used in life testing experiments especially
in reliability and survival analysis. It was proposed by Lord Rayleigh for the first time in
1880. Since then several authors have discussed its properties and have developed inferential
procedures under different situations in verity of fields; for details see, Dyer and Whisenand
(1973), Bhattacharya and Tyagi (1990), Chung (1995), Dey and Maiti (2012).

Rest of the paper is organized as follows: In section 2, model under present censoring scheme
is discussed briefly. Methods of classical and Bayes estimation are discussed in section 3. It
includes maximum likelihood estimation, method of moments estimation and computational
approach estimation method. Further, Bayes estimator and HPD credible intervals are also
obtained. Based on the numerical results of point estimation of parameter of Rayleigh dis-
tribution, performance of the estimators are compared in terms of mean squared error in
section 4. Also a real data set is analyzed for illustrative purpose in this section. Finally, the
concluding remarks are given in section 5.

2. Model description and notations

Consider a life testing experiment in which n identical items are put to test. Under the
Type-II progressive hybrid censoring scheme, an integer m < n is prefixed along with T and
integers R1, R2, . . . , Rm such that R1 +R2 + · · ·+Rm +m = n, where n is the total number
of items put on test, m and T are the prefixed maximum number of failure observations and
maximum time for termination of the experiment respectively and R1, R2, . . . , Rm are the
prefixed number of items to be removed from the experiment at 1st, 2nd,..., mth observed
failures. Let X1:m:n ≤ X2:m:n ≤ · · · ≤ Xm:m:n denote the m observed ordered failure times.
Under this censoring scheme experiment is terminated at a random time min{Xm:m:n, T}.
That is, the experiment starts with n items and at failure X1:m:n, R1 items are randomly re-
moved from the experiment and experiment continues with the remaining (n−R1− 1) items.
At second failure X2:m:n, R2 items are randomly removed from the experiment. The exper-
iment continues in this fashion removing the prefixed number of items from the experiment
at each observed failure. If the mth observed failure Xm:m:n occurs before prefixed time T ,
the experiment stops at time Xm:m:n. Otherwise, the experiment is terminated at prefixed
time T where XJ :m:n ≤ T ≤ XJ+1:m:n, by removing all the remaining R∗J = n−

∑J
i=1Ri − J

surviving items. Thus, under Type-II progressive hybrid censoring scheme two cases arise.

Case I: If Xm:m:n < T the observed life times would be {X1:m:n, . . . , Xm:m:n}
Case II: If XJ :m:n < T < XJ+1:m:n the observed life times would be {X1:m:n, . . . , XJ :m:n}

Let f(x) and F (x) denotes the probability density function and cumulative distribution func-
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tion of the distribution under study respectively then following Childs, Chandrasekar, and
Balakrishnan (2008), we can write the likelihood function for the above mentioned two cases
as follows:

For case I when Xm:m:n < T , the likelihood function is given as follows:

l(ϑ) = B1

m∏
i=1

fX(xi:m:n;ϑ)[1− FX(xi:m:n;ϑ)]Ri (1)

Where B1 =
∏m
i=1 [n−

∑i−1
k=1(1 +Rk)]

For case II when T < Xm:m:n and XJ :m:n < T < XJ+1:m:n, the likelihood function is given as
follows:

l(ϑ) = B2

J∏
i=1

[
fX(xi:m:n;ϑ){1− FX(xi:m:n;ϑ)}Ri

]
[1− FX(T ;ϑ)]R

∗
J (2)

Where B2 =
∏J
i=1 [n−

∑i−1
k=1 (1 +Rk)]

It is important to note that in our problem only partial information is available about the fail-
ure times of the items which is encoded with the help of fuzzy numbers. In light of the above
let x̃1, x̃2, . . . , x̃k be the fuzzy lifetime of k failed items such that x̃i = (ai, bi, ci); i = 1, 2, . . . , k
with corresponding membership functions ξx̃1(.), ξx̃2(.), . . . , ξx̃k(.) where

ξx̃i(x) =


x−(xi−hi)

hi
; xi − hi ≤ x ≤ xi

(xi+hi)−x
hi

; xi ≤ x ≤ xi + hi

0 ; otherwise

Let z̃i1, z̃i2, . . . , z̃iRi ; i = 1, 2, . . . , k denotes the lifetime of those Ri items which are removed
from the experiment at the time of ith failure and their membership function is defined as
follows:

ξz̃ij (z) =

{
0, z ≤ bi
1, z > bi

As discussed above T is maximum time for termination of the experiment and it is an exact
number which is fixed before the experiment starts. It is important to mention here that an
exact number can be treated as special case of fuzzy number for which MF takes only one value
which is unity. Therefore, T can be encoded as a fuzzy number T̃ with membership function
ξ
T̃

(T ) = 1 and mean of this fuzzy number will be T itself. Hence lifetime of R∗J surviving
items, which are removed from the test at prefixed time T in case II, can be encoded as fuzzy
numbers ỹ1, ỹ2, . . . , ỹR∗

J
with the membership function

ξỹj (y) =

{
0, y ≤ T
1, y > T

Thus the set of observed lifetimes in each case can be written as
Case I: Ũ = (x̃1, . . . , x̃m, z̃1, . . . , z̃m)
Case II: Ũ = (x̃1, . . . , x̃J , z̃1, . . . , z̃J , ỹT )

Where Ũ is the observed fuzzy data and can be seen as an incomplete specification of the
complete data vector U , z̃i is a 1 × Ri vector with z̃i = (z̃i1, z̃i2, . . . , z̃iRi); i = 1, 2, . . . , k and
ỹT is 1×R∗J vector with ỹT = (ỹ1, ỹ2, . . . , ỹR∗

J
).
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3. Point estimation of parameter

In this section, we will develop the methodology to obtain point estimates of population
parameters using classical as well as Bayesian methods of estimation under Type-II progressive
hybrid censoring using fuzzy data. In order to demonstrate the developed methodology we
are assuming that the life times of the items put on test are independently and identically
distributed as Rayleigh distribution with parameter ϑ. The probability density function and
the cumulative distribution function of Rayleigh distribution is given below:

f(x) = 2ϑxe−ϑx
2

;x > 0, ϑ > 0 (3)

and

F (x) = 1− e−ϑx2 ;x > 0, ϑ > 0 (4)

where ϑ > 0 is a scale parameter.

3.1. Estimation under classical setup

Under classical paradigm, three methods of estimation are used to obtain the point estimate
of parameter namely ML, MM and CE method of estimation. ML and MM methods are well
known methods of estimation while the CA method is proposed to lower the computational
efforts.

Maximum likelihood (ML) estimation

In this section we obtain the ML estimate of the parameter of the lifetime distribution using
the observed fuzzy data vector Ũ . First we try to obtain the general form of likelihood equa-
tion in each of the above stated cases i.e. case I and case II. The joint membership function
for the observed fuzzy data vector Ũ in each of the two cases is written as follows:
Case I:

ξ
Ũ

(U) =

(
m∏
i=1

ξx̃i(x)

)
×

 m∏
i=1

Ri∏
j=1

ξz̃ij (z)

 (5)

Case II:

ξ
Ũ

(U) =

(
J∏
i=1

ξx̃i(x)

)
×

 J∏
i=1

Ri∏
j=1

ξz̃ij (z)

×
R∗

J∏
j=1

ξỹj (y)

 (6)

The likelihood function for observed data Ũ can be obtained by using Zadeh ’s definition of
the probability of a fuzzy event; see Zadeh (1968)

l(ϑ; ũ) = P (ũ;ϑ) =

∫
f(u;ϑ)ξũ(u)du (7)

Using equations (5), (6) and (7), likelihood equation for the observed fuzzy data Ũ for case I
and II is given as:

l(ϑ; ũ) =

[
m∏
i=1

∫
f(x;ϑ)ξx̃i(x)dx

]
×

 m∏
i=1

Ri∏
j=1

∫
f(z;ϑ)ξz̃ij (z)dz

 (8)

and

l(ϑ; ũ) =

[
J∏
i=1

∫
f(x;ϑ)ξx̃i(x)dx

]
×

 J∏
i=1

Ri∏
j=1

∫
f(z;ϑ)ξz̃ij (z)dz

×
R∗

J∏
j=1

∫
f(y;ϑ)ξỹj (y)dy


(9)
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provided that J ≥ 1. It is important to note that MLE does not exists when the experiment
is terminated at prefixed time T before failure of any item.

Equation (8) and (9) can be used to write likelihood equation for Type-II progressively hy-
brid censored fuzzy data from a specified probability density function by simply substituting
the form of density f(x;ϑ) and membership function of fuzzy number ξx̃(x). Here we are
assuming the form of density as given in equation (3) therefore log-likelihood for case I may
be written as:

logl(ϑ; ũ) = L(ϑ; ũ) =

m∑
i=1

log

∫
2ϑxe−ϑx

2
ξx̃i(x)dx+

m∑
i=1

Ri∑
j=1

log

∫
2ϑze−ϑz

2
ξz̃ij (z)dz

= mlogϑ+
m∑
i=1

log

∫
2xe−ϑx

2
ξx̃i(x)dx− ϑ

m∑
i=1

Rib
2
(i) (10)

Similarly, using equation (9), log-likelihood for case II may be written as

logl(ϑ; ũ) = L(ϑ; ũ) =

J∑
i=1

log

∫
2ϑxe−ϑx

2
ξx̃i(x)dx+

J∑
i=1

Ri∑
j=1

log

∫
2ϑze−ϑz

2
ξz̃ij (z)dz

+

R∗
J∑

j=1

log

∫
2ϑye−ϑy

2
ξỹj (y)dy

L(ϑ; ũ) = Jlogϑ+
J∑
i=1

log

∫
2xe−ϑx

2
ξx̃i(x)dx− ϑ

[
J∑
i=1

Rib
2
(i) +R∗JT

2

]
(11)

The maximum likelihood estimator of the parameter ϑ can be obtained by differentiating log
likelihood equations, given by equations (10) and (11), partially with respect to parameter ϑ
and equating it to zero. The resulting equation is as follows:

∂L(ϑ; ũ)

∂ϑ
=
k

ϑ
−

k∑
i=1

∫
x3e−ϑx

2
ξx̃i(x)dx∫

xe−ϑx2ξx̃i(x)dx
−A(i) = 0 (12)

Where k = m and A(i) =
∑m

i=1Rib
2
(i) for case I

and k = J and A(i) = [
∑J

i=1Rib
2
(i) +R∗JT

2] for case II

Since equation (12) cannot be solved analytically therefore some existing numerical meth-
ods such as Newton-Raphson method, Expectation-Maximization (EM) algorithm or other
iterative procedure may be used to obtain the ML estimate of the parameter. Here EM
algorithm is employed to find the ML estimate of the parameter.

The Expectation-Maximization (EM) algorithm is a broadly applicable iterative approach
for computation of maximum likelihood estimates. When the data is available in incomplete
form other iterative procedures such as Newton-Raphson method, often, turn out to be more
complicated and have low convergence rate on the other hand EM algorithm provides high
convergence rate in such type of problems. In each iteration of the EM algorithm, there are
two steps, called the Expectation step or the E-step and the Maximization step or the M-step.
Due to this, the algorithm is called EM algorithm. Starting from suitable initial parameter
values, the E and M-steps are repeated until convergence. As the log-likelihood is based
partly on unobservable data, it is replaced by its conditional expectation given the observed
data in the E-step. More precisely E-step uses the current fit for unknown parameter and
observed data to find the complete-data log likelihood. In the M-step we calculate the pa-
rameter value by maximizing the expected log-likelihood function obtained in the E-step. For
further details about EM algorithm see; McLachlan and Krishnan (2007), Dempster, Laird,
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and Rubin (1977). Here we are using the fuzzy EM algorithm proposed by Denœux (2011) to
obtain the ML estimate of parameter because observed fuzzy data is incomplete specification
of complete data.

The log-likelihood for the complete data can be written as:

Lc(U, ϑ) = n(log2 + logϑ) +
n∑
i=1

logxi − ϑD(i) (13)

Differentiating equation (13) with respect to ϑ and equating it to zero, the corresponding
likelihood equation can be obtained as follows:

n

ϑ
= D(i) (14)

Where D(i) =
[∑m

i=1 x
2
i +

∑m
i=1

∑Ri
j=1 z

2
ij

]
for Case I

and D(i) =
[∑J

i=1 x
2
i +

∑J
i=1

∑Ri
j=1 z

2
ij +

∑R∗
J

j=1 y
2
j

]
for Case II.

Therefore, employing the E-step in equation (14) it reduces in the following form at the
(h+ 1)th iteration for case I and case II respectively:

n

ϑ(h+1)
=

 m∑
i=1

E(X2
i | x̃i;ϑ(h)) +

m∑
i=1

Ri∑
j=1

E(Z2
ij | z̃ij ;ϑ(h))

 (15)

n

ϑ(h+1)
=

 J∑
i=1

E(X2
i | x̃i;ϑ(h)) +

J∑
i=1

Ri∑
j=1

E(Z2
ij | z̃ij ;ϑ(h)) +

R∗
J∑

j=1

E(Y 2
j | ũj ;ϑ(h))

 (16)

where

E(W 2
i | w̃i;ϑ(h)) =

∫
w3e−ϑ

(h)w2
ξw̃i

(w)dw∫
we−ϑ

(h)w2ξw̃i
(w)dw

In the M-step we have to maximize equations (15) or (16) to find the estimate of parameter
after every iteration. Hence estimate of parameter in each of the two cases, at the (h + 1)th

iteration, may be given respectively as:

ϑ̂(h+1) = n

 m∑
i=1

E(X2
i | x̃i;ϑ(h)) +

m∑
i=1

Ri∑
j=1

E(Z2
ij | z̃ij ;ϑ(h))

−1

(17)

ϑ̂(h+1) = n

 J∑
i=1

E(X2
i | x̃i;ϑ(h)) +

J∑
i=1

Ri∑
j=1

E(Z2
ij | z̃ij ;ϑ(h)) +

R∗
J∑

j=1

E(Y 2
j | ũj ;ϑ(h))

−1

(18)

The iterative process is repeated until the convergence i.e. |ϑ̂(h+1) − ϑ̂(h)|< ε for some ε > 0.
If the convergence occurs then the current ϑ̂(h+1) is the approximate maximum likelihood
estimates of ϑ via EM algorithm.

Method of conditional moments

The method of moments is quite popular method of estimation in classical setup to find
the estimates of unknown population parameters. In method of moments we equate different
sample moments with corresponding population moments to find the parameter estimates. In
this article we are concerned with the analysis of Type-II progressively hybrid censored data
when the available data is imprecise and presented in form of fuzzy numbers. Therefore we
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can utilize method of conditional moments, for incomplete data, to obtain the moment esti-
mate of population parameters which is recently proposed by Lu and Wang (2013). For this
we have to equate the population moments with conditional expectation of sample moment
given the observed data.

Let X = (X1, X1, . . . , Xn) be a random sample from density function f(x, θ) and µk(θ) is the
kth non-central population moment. Whereas mk(X) is the kth non-central sample moment.
Let Y be the incomplete observed sample then the moment estimators for θ = (θ1, θ2, . . . , θp)

′

are the solution of following conditional moment equation:

µk(θ) = E[mk(X)|Y ] ; k = 1, 2, . . . , p (19)

In order to further explain the methodology we will obtain the conditional moment estimate for
parameter of Rayleigh distribution. It is well known that rth moment of Rayleigh distribution
is given as:

E(Xr) = ϑ−
r
2 Γ
(r

2
+ 1
)

(20)

We will use an iterative algorithm to find the parameter estimate. First we have to choose a
suitable initial value of the unknown parameter and then sample moment is replaced by its
conditional expectation given the observed data. Following equation, obtained by equating
the first sample moment to the corresponding population moment, can be used to find the
estimate of parameter using moment method in both cases

ϑ−
1
2 Γ

(
1

2
+ 1

)
=
B(i)

n

The solution for ϑ, obtained by solving the above expressions, is as follows:

ϑ =
n2π

4

[
B(i)−2

]
(21)

where B(i) =

 m∑
i=1

E(Xi | x̃i) +
m∑
i=1

Ri∑
j=1

E(zij | z̃ij)

 for case I

and B(i) =

 J∑
i=1

E(Xi | x̃i) +
J∑
i=1

Ri∑
j=1

E(zij | z̃ij) +

R∗
J∑

j=1

E(Yj | ỹj)

 for case II

Parameter is updated at each iteration by its predicted value at the previous iteration. We
will proceed in the same manner until the convergence occurs and current value of parameter
at which convergence occur is the MM estimate of parameter. The estimated value of param-
eter at the (h+ 1)th iteration

for case I:

ϑ(h+1) =
n2π

4

 m∑
i=1

E(X | x̃i;ϑ(h)) +
m∑
i=1

Ri∑
j=1

E(Z | z̃ij ;ϑ(h))

−2

and for case II:

ϑ(h+1) =
n2π

4

 J∑
i=1

E(X | x̃i;ϑ(h)) +
J∑
i=1

Ri∑
j=1

E(Z | z̃ij ;ϑ(h)) +

R∗
J∑

j=1

E(Y | ũj ;ϑ(h))

−2
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Where

E(X | x̃i;ϑ(h)) =

∫
x2e−ϑ

(h)x2ξx̃i(x)dx∫
xe−ϑ

(h)x2ξx̃i(x)dx
; i = 1, 2, . . . ,m

E(Z | z̃ij ;ϑ(h)) =

∫
z2e−ϑ

(h)z2ξz̃ij (z)dz∫
ze−ϑ

(h)z2ξz̃ij (z)dz
; i = 1, 2, . . . ,m, j = 1, 2, . . . , Ri

E(Y | ũj ;ϑ(h)) =

∫
y2e−ϑ

(h)y2ξỹj (y)dy∫
ye−ϑ

(h)y2ξỹj (y)dy
; j = 1, 2, . . . , R∗J

Estimated value of parameter ϑ, at which convergence occurs, will provide us the method of
moment (MM) estimate of population parameter.

Computational approach estimation method

In the present article we have modified some conventional methods of estimating lifetime
parameters according to new situation where the observations are censored and available in
form of fuzzy numbers. Although conventional estimation methods are vary efficient, they
need a lots of computational efforts to estimate the population parameter. Therefore we will
use a new approach to find the estimate of population parameter which is called compu-
tational approach estimation (CAE) method. In this method less computational efforts are
required and mean squared errors are also reasonable. Recently, Pak and Chatrabgoun (2016)
proposed CAE method of estimation to obtain a point estimate of exponential mean parame-
ter under progressive Type-II censoring scheme, when the lifetime observations are fuzzy. Let
x̃1, x̃2, . . . , x̃k be the fuzzy lifetime of k failed items, where x̃i = (ai, bi, ci); i = 1, 2, . . . , k. The
mean fuzzy number, denoted by ¯̃x = (ā, b̄, c̄), can be obtained as

ā =

∑k
i=1 ai
k

, b̄ =

∑k
i=1 bi
k

and c̄ =

∑k
i=1 ci
k

Then the CAE estimate of parameter of Rayleigh distribution is obtained by replacing the
fuzzy data in the likelihood equation with its de-fuzzified values. The CAE estimate of the
parameter ϑ obtained in this way in case I and case II is given respectively by equations (22)
and (23) as:

˜̃
ϑ =

[˜̃x2
+

1

m

m∑
i=1

Rib
2
(i)

]−1

(22)

˜̃
ϑ =

[˜̃x2
+

1

J

(
J∑
i=1

Rib
2
(i) +R∗JT

2

)]−1

(23)

where ˜̃x =

∫
xξ¯̃x(x)dx∫
ξ¯̃x(x)dx

Here we are converting the mean fuzzy number ¯̃x into real number ˜̃x, by using a method
of de-fuzzification named as center of gravity de-fuzzification technique, to obtain the point
estimate of the parameter ϑ.

3.2. Estimation under Bayesian setup

In the recent decades Bayesian perspective is favored for statistical inferences because it helps
to find useful prior information and utilize it in formulating better methods of estimation. In
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this section, we have developed the Bayesian estimation procedure and HPD interval for the
parameter ϑ of Rayleigh distribution. Let us assume that ϑ has gamma prior with pdf

π(ϑ) =
βα

Γ(α)
e−βϑϑ(α−1);ϑ > 0, α > 0, β > 0 (24)

Here, both the hyper parameters α and β are assumed to be known. We compute the Bayes
estimate of the unknown parameter under squared error loss function. Using the prior given
in equation (24) and the likelihood functions given in equations (8) and (9), the posterior
density of ϑ for the given data can be written as follows:

π(ϑ | ũ) =
l(ϑ; ũ)π(ϑ)∫∞

0 l(ϑ; ũ)π(ϑ)dϑ

=
J∫∞

0 Jdϑ
(25)

Where, for case I:

J = e−βϑϑα−1 ×
m∏
i=1

∫
2ϑxe−ϑx

2
ξx̃i(x)dx×

m∏
i=1

Ri∏
j=1

∫
2ϑze−ϑz

2
ξz̃ij (z)dz

for case II:

J = e−βϑϑα−1 ×
J∏
i=1

∫
2ϑxe−ϑx

2
ξx̃i(x)dx×

J∏
i=1

Ri∏
j=1

∫
2ϑze−ϑz

2
ξz̃ij (z)dz

×
R∗

J∏
j=1

∫
2ϑye−ϑy

2
ξỹj (y)dy

Suppose h(.) is a function of ϑ. Then, Bayes estimate of h(.) under squared error loss function
can be written as:

ĥ(ϑ) = Eπ[h(ϑ)]

=

∫∞
0 h(ϑ)Jdϑ∫∞

0 Jdϑ

It may be noted from the equation (25) that there is no closed form for the estimator. There-
fore, we use Markov Chain Monte Carlo (MCMC) method to simulate sample from posterior
distribution in order to calculate the Bayes estimate of ϑ and also to construct its HPD in-
terval. We observed that posterior density π(ϑ | ũ) is similar to normal distribution. Thus
utilizing the concept of Metropolis-Hastings algorithm with normal proposal distribution, we
can generate samples from the posterior density function; see Hastings (1970). Algorithm of
simulation consists of following steps:

Step 1: Start with an initial guess value ϑ(0)

Step 2: Set j=1 and generate a new candidate parameter value ϑ∗ from proposal density
q(ϑ(1)|ϑ(0)).

Step 3: Accept candidate ϑ∗ as

ϑ(j) =

{
ϑ∗ with probability ρ(ϑ∗, ϑ(j−1))

ϑ(j−1) with probability 1− ρ(ϑ∗, ϑ(j−1))

where
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ρ(ϑ∗, ϑ(j−1)) = min
{

π(ϑ∗|ũ)q(ϑ(j−1)|ϑ∗)

π(ϑ(j−1)|ũ)q(ϑ∗|ϑ(j−1))
, 1
}

Step 4: Set j=j+1

Step 5: Repeat steps 2-4, M times and obtain ϑ(j) ; j=1,2,. . . ,M

Step 6: Obtain the Bayes estimates of the parameter ϑ under SELF as the mean of generated
samples from the posterior densities i.e.

Eπ(ϑ | ũ) =
1

M −M0

M∑
j=M0+1

ϑ(j)

Where M0 is burn-in period.

Step 7: To construct the HPD credible intervals for ϑ, order the simulated samples as ϑ(1) ≤
ϑ(2) ≤ · · · ≤ ϑ(M). Then construct all the 100(1− α)% credible intervals of ϑ as(

ϑ[1], ϑ[M(1−α)+1]
)
, . . . ,

(
ϑ[Mα], ϑ[M ]

)
Here [X] denotes the largest integer less than or equal to X. Then the HPD credible
interval of ϑ is that credible interval which has the shortest length.

4. Simulation study

In this section, we present some experimental results based on a Monte-Carlo simulation study
to compare the performance of different methods based on Type-II progressive hybrid censored
fuzzy lifetime data. Samples are generated from the considered model for the arbitrarily
chosen value of the parameter. The comparison of the performance of the estimators has been
made on the basis of mean squared error (MSE). For this purpose, first we have generated
Type-II progressive hybrid censored lifetime data from the specified distribution using the
algorithm given by Balakrishnan and Cramer (2014) for fixed value of parameter n, m and
censoring scheme. Each realization of x was then fuzzified with the corresponding membership
function

ξx̃i(x) =


x−(xi−hi)

hi
; xi − hi ≤ x ≤ xi

(xi+hi)−x
hi

; xi ≤ x ≤ xi + hi

0 ; otherwise

where hi = 0.05xi. We are simulating the situation in which observer is unable to provide
exact value of observation and an interval of plausible values [xi − hi, xi + hi] is provided.
Using these fuzzy numbers we obtained estimate of the unknown parameter ϑ using the four
methods provided in the preceding section based on the generated sample. We have also
obtained the average length of the HPD credible intervals. After that, we have repeated this
process for sufficiently large number of times to obtain the average estimates of the parameter
and to get the estimated MSEs of the estimators.

For this purpose, we have arbitrarily taken ϑ = 1. To observe the effect of variation in sample
size n and total number of prefixed failures m on the estimated value of parameter ϑ we have
taken n = (20, 30, 40, 50) and m = (10, 15, 20, 25). The various values of prefixed time of
termination of experiment T considered for the estimation of the parameter are 0.4, 0.6 and
0.8. For further variation, we have considered six removal schemes for given values of n and
m which are as follows:

Scheme 1: R1 = R2 = · · · = Rm−1 = 0 and Rm = n−m;
Scheme 2: R1 = n−m and R2 = R3 = · · · = Rm = 0;
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Scheme 3: R1 = R2 = · · · = Rm−1 = 1 and Rm = n− 2m+ 1;
Scheme 4: R1 = R2 = · · · = Rm−5 = 0 and Rm−4 = Rm−3 = · · · = Rm =

(
n−m

5

)
;

Scheme 5: R1 = · · · = R(k−3) = 0 = R(k+3) = · · · = Rm and Rk−2 = · · · = Rk+2 =
(
n−m

5

)
Where k is

(
m
2

)
and

(
m+1

2

)
respectively for even and odd value of m;

Scheme 6: R1 = R2 = · · · = R5 =
(
n−m

5

)
and R6 = R7 = · · · = Rm = 0;

The samples of Type-II progressive hybrid censored fuzzy lifetime data were simulated using
the procedure mentioned above. ML, MM and CA estimates of the parameter are calculated
by taking suitable initial value of parameter in the iterative algorithms. Also, Bayes estimate
under informative and non-informative priors along with their HPD intervals are calculated.
For this purpose, we use non informative prior α = β = 0 but these priors are improper priors
hence to make them proper prior we will take α = β = 0.00001. These results are same as
those obtained for improper priors. In order to analyze the effect of informative prior on Bayes
estimate we have taken three different sets of values for hyper parameters. For the choice of
hyper parameters of informative prior, we have taken prior means equals to the true values
of the parameter with varying prior variances. The prior variance indicates our confidence in
the prior guess. A large prior variance shows less confidence in prior guess. On other hand,
small prior variance indicates greater confidence in prior guess. In this study, we have taken
three different values of prior variance viz. 0.5 (small), 10 (moderate) and 100 (large) and
denoted it with prior 1, 2 and 3. We have generated posterior sample of size 30000 to obtain
the Bayes estimate of parameter using the algorithm discussed in section 3.2 and then first
10000 MCMC iterations (Burn-in period) have been discarded from the generated sequence.
We have repeated the whole process sufficient number times to obtain the average estimates,
corresponding mean square errors (MSEs) and HPD interval corresponding to Bayes estimate.
The results obtained in this way are summarized and presented in Tables 1-5.

From Tables 1-3 we note that as the sample size (n), number of failures (m) and prefixed time
of termination (T ) increases MSE of all estimators decreases for fixed value of parameter. We
may further note that MSE for scheme 1 is less than MSEs for all other schemes and MSE for
scheme 2 is greater than MSEs for all other schemes. It may also be noted that the MSE of
Bayes estimator is less than all other estimators followed by MLE, MME and CAE in most of
the cases. From Table 4 we see that the average length of HPD interval decreases as sample
size (n), number of failures (m) and prefixed time of termination (T ) increases for fix value
of parameter and the coverage probability for HPD intervals is either equal to the prefixed
value (95%) or slightly less than that. From Table 5 we note that the for fixed value of n,
m, T and parameter ϑ, MSE of Bayes estimator increases as prior variance increases when
informative priors are used to obtain the estimate of parameter. We may further note that
the average length of HPD interval increase as prior variance increases.

Table 1: Average MLE, MME, CAE and Bayes estimate of the parameter of Rayleigh distri-
bution based on Type-II progressively hybrid censored fuzzy lifetime data along with corre-
sponding MSE’s for fixed value of parameter ϑ = 1, T = 0.4 and varying n, m and censoring
scheme

(n,m) Scheme MLE MSE MME MSE CAE MSE Bayes MSE

(20,10) 1 1.0640 0.3322 1.0654 0.3406 1.0742 0.3478 1.0638 0.3320
2 1.1981 0.6432 1.2150 0.6919 1.2142 0.6933 1.1976 0.6431
3 1.0969 0.3843 1.0979 0.3984 1.1080 0.4095 1.0964 0.3842
4 1.0633 0.3455 1.0644 0.3527 1.0735 0.3621 1.0631 0.3454
5 1.1170 0.4235 1.1156 0.4309 1.1282 0.4458 1.1168 0.4234
6 1.1436 0.4987 1.1445 0.5151 1.1559 0.5290 1.1436 0.4985

(30,10) 1 1.0278 0.2361 1.0277 0.2382 1.0375 0.2462 1.0274 0.2359
2 1.1793 0.6266 1.2009 0.6814 1.1973 0.6810 1.1791 0.6264
3 1.0479 0.2732 1.0493 0.2785 1.0584 0.2865 1.0477 0.2730
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(n,m) Scheme MLE MSE MME MSE CAE MSE Bayes MSE

4 1.0314 0.2555 1.0299 0.2572 1.0410 0.2663 1.0311 0.2554
5 1.0869 0.3408 1.0834 0.3435 1.0976 0.3580 1.0862 0.3406
6 1.1163 0.4174 1.1150 0.4276 1.1286 0.4413 1.1160 0.4172

(40,10) 1 1.0154 0.1999 1.0155 0.2000 1.0249 0.2081 1.0150 0.1988
2 1.1721 0.6101 1.1969 0.6663 1.1916 0.6655 1.1720 0.6098
3 1.0257 0.2018 1.0248 0.2018 1.0356 0.2106 1.0253 0.2017
4 1.0476 0.2273 1.0458 0.2272 1.0575 0.2370 1.0475 0.2271
5 1.0992 0.3081 1.0950 0.3092 1.1100 0.3234 1.0990 0.3080
6 1.1462 0.4282 1.1428 0.4372 1.1591 0.4541 1.1458 0.4280

(50,10) 1 1.0410 0.1932 1.0370 0.1946 1.0507 0.2072 1.0368 0.1929
2 1.1519 0.5828 1.1804 0.6455 1.1716 0.6371 1.1516 0.5826
3 1.0370 0.1908 1.0343 0.1912 1.0470 0.2029 1.0370 0.1903
4 1.0626 0.2041 1.0582 0.2020 1.0724 0.2129 1.0622 0.2039
5 1.1218 0.3034 1.1156 0.3109 1.1330 0.3215 1.1209 0.3034
6 1.1514 0.3974 1.1472 0.4094 1.1641 0.4208 1.1511 0.3972

(30,15) 1 1.0280 0.2300 1.0286 0.2329 1.0378 0.2400 1.0270 0.2300
2 1.0908 0.4115 1.1004 0.4294 1.1045 0.4377 1.0903 0.4033
3 1.0480 0.2600 1.0488 0.2652 1.0583 0.2722 1.0479 0.2559
4 1.0282 0.2328 1.0290 0.2366 1.0379 0.2428 1.0280 0.2325
5 1.0504 0.2624 1.0496 0.2637 1.0605 0.2742 1.0504 0.2623
6 1.0887 0.3424 1.0901 0.3548 1.1001 0.3607 1.0884 0.3417

(40,15) 1 1.0168 0.1680 1.0178 0.1707 1.0263 0.1750 1.0161 0.1637
2 1.0910 0.4105 1.1026 0.4312 1.1061 0.4392 1.0902 0.4084
3 1.0298 0.1947 1.0306 0.1993 1.0398 0.2035 1.0294 0.1929
4 1.0167 0.1731 1.0170 0.1756 1.0262 0.1804 1.0167 0.1731
5 1.0450 0.2154 1.0432 0.2164 1.0549 0.2249 1.0446 0.2153
6 1.0987 0.3213 1.0979 0.3301 1.1104 0.3392 1.0983 0.3211

(50,15) 1 1.0111 0.1419 1.0113 0.1431 1.0205 0.1476 1.0103 0.1387
2 1.1024 0.4100 1.1173 0.4346 1.1189 0.4405 1.1020 0.4054
3 1.0254 0.1555 1.0262 0.1583 1.0352 0.1626 1.0251 0.1508
4 1.0156 0.1454 1.0161 0.1469 1.0252 0.1515 1.0153 0.1454
5 1.0570 0.1954 1.0533 0.1938 1.0668 0.2038 1.0564 0.1953
6 1.1177 0.3030 1.1182 0.3162 1.1300 0.3206 1.1174 0.3030

(40,20) 1 1.0138 0.1766 1.0143 0.1786 1.0233 0.1839 1.0135 0.1765
2 1.0582 0.3092 1.0659 0.3222 1.0709 0.3269 1.0575 0.3089
3 1.0296 0.1958 1.0307 0.1987 1.0397 0.2047 1.0296 0.1957
4 1.0281 0.1792 1.0267 0.1804 1.0379 0.1871 1.0281 0.1790
5 1.0249 0.1914 1.0239 0.1923 1.0345 0.1994 1.0246 0.1913
6 1.0754 0.2640 1.0769 0.2737 1.0867 0.2781 1.0750 0.2638

(50,20) 1 1.0142 0.1370 1.0152 0.1392 1.0236 0.1427 1.0141 0.1369
2 1.0580 0.3048 1.0661 0.3146 1.0715 0.3233 1.0572 0.3046
3 1.0239 0.1556 1.0243 0.1583 1.0337 0.1624 1.0231 0.1554
4 1.0103 0.1373 1.0106 0.1389 1.0197 0.1428 1.0100 0.1372
5 1.0265 0.1648 1.0253 0.1650 1.0361 0.1715 1.0263 0.1647
6 1.0854 0.2475 1.0864 0.2569 1.0971 0.2617 1.0852 0.2474

(50,25) 1 1.0107 0.1399 1.0112 0.1417 1.0201 0.1456 1.0106 0.1397
2 1.0432 0.2553 1.0483 0.2613 1.0557 0.2696 1.0430 0.2552
3 1.0259 0.1540 1.0258 0.1553 1.0356 0.1607 1.0253 0.1538
4 1.0069 0.1357 1.0069 0.1371 1.0161 0.1410 1.0061 0.1356
5 1.0176 0.1455 1.0174 0.1463 1.0272 0.1516 1.0173 0.1454
6 1.0663 0.2184 1.0688 0.2277 1.0776 0.2304 1.0660 0.2180
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Table 2: Average MLE, MME, CAE and Bayes estimate of the parameter of Rayleigh distri-
bution based on Type-II progressively hybrid censored fuzzy lifetime data along with corre-
sponding MSE’s for fixed value of parameter ϑ = 1, T = 0.6 and varying n, m and censoring
scheme

(n,m) Scheme MLE MSE MME MSE CAE MSE Bayes MSE

(20,10) 1 1.0395 0.2011 1.0428 0.2059 1.0627 0.2229 1.0394 0.2010
2 1.0964 0.3605 1.1071 0.3886 1.1279 0.4147 1.0961 0.3601
3 1.0638 0.2440 1.0629 0.2507 1.0884 0.2721 1.0633 0.2437
4 1.0616 0.2259 1.0583 0.2266 1.0846 0.2485 1.0580 0.2243
5 1.0784 0.2631 1.0776 0.2687 1.1025 0.2923 1.0781 0.2630
6 1.1123 0.3163 1.1123 0.3347 1.1398 0.3612 1.1120 0.3161

(30,10) 1 1.0750 0.2006 1.0664 0.2035 1.0967 0.2161 1.0662 0.2003
2 1.0944 0.3549 1.1086 0.3843 1.1305 0.4153 1.0938 0.3545
3 1.0402 0.1828 1.0388 0.1832 1.0637 0.2015 1.0400 0.1828
4 1.0836 0.1932 1.0768 0.1915 1.1060 0.2126 1.0766 0.1914
5 1.1157 0.2500 1.1117 0.2572 1.1405 0.2777 1.1153 0.2497
6 1.1073 0.2642 1.1028 0.2699 1.1349 0.3013 1.1070 0.2641

(40,10) 1 1.1024 0.1661 1.0893 0.1726 1.1204 0.1827 1.0890 0.1661
2 1.1077 0.3585 1.1256 0.3847 1.1482 0.4259 1.1074 0.3581
3 1.0910 0.1599 1.0789 0.1662 1.1118 0.1787 1.0786 0.1597
4 1.0780 0.1648 1.0670 0.1697 1.0986 0.1844 1.0664 0.1647
5 1.1191 0.2214 1.1083 0.2228 1.1429 0.2523 1.1080 0.2210
6 1.1330 0.2673 1.1334 0.2840 1.1621 0.3087 1.1329 0.2672

(50,10) 1 1.0943 0.1593 1.1000 0.1644 1.1083 0.1860 1.0942 0.1593
2 1.0870 0.3439 1.1107 0.3766 1.1264 0.4120 1.0862 0.3438
3 1.1040 0.1663 1.0909 0.1688 1.1204 0.1951 1.1040 0.1663
4 1.0882 0.1635 1.0778 0.1689 1.1069 0.1805 1.0771 0.1634
5 1.1394 0.2331 1.1331 0.2415 1.1634 0.2629 1.1390 0.2330
6 1.1275 0.2587 1.1278 0.2768 1.1565 0.2994 1.1271 0.2525

(30,15) 1 1.0187 0.1191 1.0178 0.1203 1.0406 0.1308 1.0184 0.1190
2 1.0508 0.2275 1.0561 0.2349 1.0801 0.2583 1.0502 0.2273
3 1.0389 0.1474 1.0394 0.1512 1.0623 0.1642 1.0382 0.1472
4 1.0192 0.1233 1.0186 0.1249 1.0415 0.1360 1.0190 0.1233
5 1.0606 0.1620 1.0566 0.1640 1.0833 0.1796 1.0618 0.1617
6 1.0669 0.1998 1.0675 0.2086 1.0935 0.2286 1.0665 0.1996

(40,15) 1 1.0284 0.1050 1.0257 0.1066 1.0502 0.1166 1.0251 0.1048
2 1.0628 0.2291 1.0704 0.2394 1.0945 0.2635 1.0623 0.2290
3 1.0359 0.1157 1.0350 0.1176 1.0593 0.1293 1.0353 0.1156
4 1.0360 0.1064 1.0327 0.1060 1.0575 0.1172 1.0320 0.1060
5 1.0686 0.1421 1.0630 0.1434 1.0903 0.1569 1.0683 0.1420
6 1.0821 0.1882 1.0858 0.2005 1.1101 0.2168 1.0820 0.1880

(50,15) 1 1.0442 0.1002 1.0377 0.0969 1.0642 0.1077 1.0374 0.0968
2 1.0557 0.2268 1.0657 0.2391 1.0890 0.2621 1.0555 0.2264
3 1.0433 0.1053 1.0398 0.1070 1.0660 0.1177 1.0394 0.1053
4 1.0475 0.1004 1.0416 0.1020 1.0678 0.1110 1.0413 0.1004
5 1.0823 0.1382 1.0764 0.1406 1.1034 0.1531 1.0820 0.1380
6 1.0790 0.1772 1.0855 0.1919 1.1078 0.2063 1.0783 0.1769

(40,20) 1 1.0178 0.0881 1.0191 0.0901 1.0400 0.0974 1.0171 0.0880
2 1.0416 0.1730 1.0477 0.1797 1.0695 0.1956 1.0415 0.1730
3 1.0342 0.1092 1.0345 0.1122 1.0576 0.1221 1.0340 0.1090
4 1.0173 0.0903 1.0176 0.0915 1.0393 0.0997 1.0169 0.0900
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(n,m) Scheme MLE MSE MME MSE CAE MSE Bayes MSE

5 1.0514 0.1185 1.0475 0.1199 1.0732 0.1311 1.0513 0.1184
6 1.0490 0.1497 1.0532 0.1583 1.0756 0.1709 1.0482 0.1494

(50,20) 1 1.0194 0.0761 1.0179 0.0764 1.0410 0.0841 1.0174 0.0760
2 1.0417 0.1705 1.0474 0.1775 1.0709 0.1934 1.0413 0.1703
3 1.0281 0.0862 1.0283 0.0884 1.0511 0.0964 1.0280 0.0862
4 1.0209 0.0795 1.0197 0.0794 1.0425 0.0874 1.0209 0.0793
5 1.0569 0.1058 1.0519 0.1066 1.0777 0.1167 1.0566 0.1056
6 1.0560 0.1440 1.0608 0.1540 1.0842 0.1665 1.0558 0.1436

(50,25) 1 1.0076 0.0679 1.0079 0.0694 1.0291 0.0749 1.0075 0.0679
2 1.0304 0.1364 1.0333 0.1404 1.0572 0.1536 1.0300 0.1362
3 1.0273 0.0857 1.0276 0.0878 1.0502 0.0956 1.0271 0.0856
4 1.0120 0.0709 1.0119 0.0722 1.0338 0.0783 1.0120 0.0708
5 1.0380 0.0883 1.0353 0.0890 1.0590 0.0971 1.0378 0.0883
6 1.0449 0.1208 1.0486 0.1254 1.0720 0.1381 1.0443 0.1207

Table 3: Average MLE, MME, CAE and Bayes estimate of the parameter of Rayleigh distri-
bution based on Type-II progressively hybrid censored fuzzy lifetime data along with corre-
sponding MSE’s for fixed value of parameter ϑ = 1, T = 0.8 and varying n, m and censoring
scheme

(n,m) Scheme MLE MSE MME MSE CAE MSE Bayes MSE

(20,10) 1 1.0857 0.1688 1.0748 0.1776 1.1251 0.2052 1.0855 0.1686
2 1.0668 0.2588 1.0729 0.2740 1.1215 0.3301 1.0665 0.2584
3 1.0789 0.2030 1.0762 0.2057 1.1253 0.2499 1.0789 0.2027
4 1.0846 0.1798 1.0767 0.1807 1.1258 0.2138 1.0841 0.1798
5 1.1104 0.2159 1.1046 0.2276 1.1552 0.2679 1.1100 0.2155
6 1.0880 0.2276 1.0912 0.2450 1.1374 0.2886 1.0876 0.2271

(30,10) 1 1.0999 0.1687 1.0823 0.1729 1.1258 0.1872 1.0820 0.1683
2 1.0644 0.2508 1.0764 0.2758 1.1254 0.3367 1.0642 0.2500
3 1.0935 0.1653 1.0803 0.1730 1.1283 0.1938 1.0800 0.1649
4 1.0935 0.1771 1.0827 0.1800 1.1282 0.2053 1.0813 0.1769
5 1.1137 0.2183 1.1069 0.2220 1.1575 0.2746 1.1135 0.2179
6 1.1017 0.2228 1.1067 0.2437 1.1569 0.2969 1.1014 0.2221

(40,10) 1 1.1154 0.1658 1.1003 0.1703 1.1340 0.1803 1.1002 0.1658
2 1.0670 0.2520 1.0775 0.2735 1.1319 0.3366 1.0669 0.2509
3 1.1046 0.1589 1.0896 0.1638 1.1277 0.1759 1.0895 0.1582
4 1.1089 0.1647 1.0946 0.1693 1.1367 0.1867 1.0946 0.1644
5 1.1180 0.1953 1.1118 0.2007 1.1601 0.2412 1.1180 0.1952
6 1.0868 0.2063 1.0891 0.2182 1.1412 0.2722 1.0864 0.2059

(50,10) 1 1.1293 0.1650 1.1156 0.1697 1.1442 0.1779 1.1156 0.1642
2 1.0915 0.2692 1.1019 0.2890 1.1630 0.3511 1.0914 0.2689
3 1.1112 0.1575 1.0977 0.1625 1.1280 0.1709 1.0977 0.1572
4 1.1105 0.1743 1.0969 0.1779 1.1334 0.1913 1.0968 0.1740
5 1.1133 0.2009 1.1118 0.2121 1.1554 0.2515 1.1131 0.2004
6 1.1129 0.2137 1.1180 0.2326 1.1702 0.2887 1.1126 0.2132

(30,15) 1 1.0486 0.0977 1.0394 0.1023 1.0868 0.1188 1.0392 0.0975
2 1.0550 0.1637 1.0597 0.1732 1.1076 0.2092 1.0548 0.1636
3 1.0463 0.1047 1.0424 0.1062 1.0888 0.1279 1.0462 0.1046
4 1.0684 0.1064 1.0602 0.1088 1.1077 0.1298 1.0601 0.1063
5 1.0617 0.1156 1.0559 0.1199 1.1009 0.1408 1.0617 0.1154
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(n,m) Scheme MLE MSE MME MSE CAE MSE Bayes MSE

6 1.0594 0.1428 1.0656 0.1527 1.1110 0.1845 1.0590 0.1425

(40,15) 1 1.0681 0.0941 1.0575 0.0965 1.0980 0.1068 1.0575 0.0940
2 1.0440 0.1611 1.0485 0.1689 1.0970 0.2030 1.0436 0.1610
3 1.0521 0.0967 1.0443 0.0997 1.0908 0.1164 1.0442 0.0966
4 1.0666 0.0995 1.0599 0.0992 1.1002 0.1140 1.0598 0.0991
5 1.0775 0.1170 1.0735 0.1205 1.1159 0.1431 1.0773 0.1169
6 1.0676 0.1414 1.0726 0.1509 1.1219 0.1871 1.0676 0.1411

(50,15) 1 1.0825 0.0899 1.0711 0.0924 1.1051 0.1002 1.0711 0.0892
2 1.0517 0.1569 1.0603 0.1695 1.1077 0.2020 1.0512 0.1565
3 1.0545 0.0869 1.0453 0.0876 1.0834 0.0968 1.0545 0.0865
4 1.0684 0.0944 1.0575 0.0971 1.0956 0.1073 1.0575 0.0942
5 1.0679 0.1169 1.0622 0.1219 1.1049 0.1441 1.0677 0.1164
6 1.0740 0.1409 1.0778 0.1536 1.1315 0.1892 1.0740 0.1405

(40,20) 1 1.0351 0.0705 1.0292 0.0722 1.0733 0.0850 1.0351 0.0725
2 1.0372 0.1169 1.0411 0.1240 1.0861 0.1465 1.0371 0.1167
3 1.0329 0.0754 1.0329 0.0787 1.0749 0.0932 1.0327 0.0753
4 1.0392 0.0720 1.0352 0.0716 1.0770 0.0853 1.0392 0.0716
5 1.0507 0.0835 1.0498 0.0879 1.0884 0.1031 1.0504 0.0831
6 1.0305 0.1006 1.0338 0.1070 1.0801 0.1289 1.0305 0.0906

(50,20) 1 1.0493 0.0643 1.0410 0.0660 1.0809 0.0745 1.0493 0.0640
2 1.0375 0.1225 1.0391 0.1296 1.0883 0.1543 1.0372 0.1224
3 1.0338 0.0745 1.0305 0.0747 1.0743 0.0896 1.0338 0.0741
4 1.0372 0.0673 1.0314 0.0676 1.0701 0.0773 1.0372 0.0671
5 1.0527 0.0880 1.0482 0.0913 1.0911 0.1097 1.0526 0.0879
6 1.0389 0.1054 1.0458 0.1120 1.0911 0.1361 1.0387 0.1053

(50,25) 1 1.0265 0.0507 1.0227 0.0518 1.0648 0.0616 1.0265 0.0504
2 1.0382 0.0966 1.0406 0.1026 1.0862 0.1221 1.0380 0.0962
3 1.0275 0.0597 1.0261 0.0623 1.0687 0.0740 1.0275 0.0596
4 1.0271 0.0542 1.0238 0.0547 1.0648 0.0646 1.0270 0.0538
5 1.0380 0.0637 1.0360 0.0676 1.0745 0.0778 1.0380 0.0636
6 1.0175 0.0821 1.0218 0.0863 1.0661 0.1041 1.0175 0.0811

Table 4: Lower limit, upper limit, width and corresponding coverage probabilities of HPD
credible interval for fixed value of parameter ϑ = 1 with varying time of termination i.e.
T = 0.4, 0.6, 0.8

(n,m) Scheme
T = 0.4 T = 0.6 T = 0.8

LL UL HPD CP LL UL HPD CP LL UL HPD CP

(20,10) 1 0.17 2.20 2.03 0.83 0.34 1.88 1.54 0.89 0.44 1.80 1.36 0.94
2 0.09 2.76 2.67 0.97 0.20 2.25 2.05 0.90 0.28 1.97 1.69 0.93
3 0.16 2.35 2.19 0.89 0.29 1.94 1.65 0.93 0.39 1.86 1.47 0.94
4 0.18 2.25 2.07 0.84 0.33 1.89 1.56 0.88 0.42 1.83 1.40 0.93
5 0.17 2.32 2.15 0.86 0.31 2.02 1.72 0.91 0.37 1.90 1.53 0.94
6 0.16 2.53 2.37 0.92 0.27 2.14 1.87 0.92 0.33 1.94 1.61 0.93

(30,10) 1 0.25 1.96 1.70 0.93 0.44 1.83 1.39 0.92 0.48 1.80 1.32 0.94
2 0.09 2.63 2.54 0.92 0.19 2.14 1.95 0.91 0.29 1.97 1.69 0.93
3 0.24 2.02 1.78 0.95 0.40 1.82 1.41 0.93 0.39 1.86 1.47 0.94
4 0.26 2.00 1.74 0.94 0.41 1.84 1.43 0.91 0.46 1.80 1.34 0.95
5 0.24 2.14 1.90 0.94 0.36 1.96 1.61 0.93 0.40 1.87 1.47 0.93
6 0.19 2.27 2.08 0.93 0.31 2.11 1.80 0.91 0.36 1.95 1.59 0.94

(40,10) 1 0.32 1.83 1.51 0.94 0.48 1.83 1.35 0.94 0.48 1.81 1.33 0.96
2 0.10 2.64 2.54 0.92 0.21 2.20 2.00 0.90 0.30 2.01 1.71 0.93
3 0.31 1.89 1.58 0.92 0.45 1.77 1.33 0.92 0.47 1.77 1.30 0.95
4 0.31 1.87 1.56 0.93 0.46 1.83 1.37 0.95 0.47 1.81 1.33 0.94
5 0.29 2.06 1.77 0.93 0.38 1.94 1.55 0.93 0.42 1.90 1.48 0.96
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(n,m) Scheme
T = 0.4 T = 0.6 T = 0.8

LL UL HPD CP LL UL HPD CP LL UL HPD CP

6 0.23 2.26 2.03 0.92 0.32 2.09 1.76 0.94 0.36 1.92 1.56 0.93
(50,10) 1 0.38 1.80 1.42 0.93 0.38 1.79 1.41 0.95 0.48 1.81 1.33 0.96

2 0.11 2.71 2.60 0.94 0.20 2.19 1.98 0.91 0.29 1.98 1.69 0.94
3 0.36 1.81 1.45 0.91 0.48 1.83 1.35 0.94 0.48 1.81 1.33 0.96
4 0.37 1.88 1.51 0.94 0.46 1.78 1.33 0.94 0.48 1.82 1.34 0.95
5 0.32 2.00 1.68 0.92 0.40 1.96 1.56 0.94 0.41 1.85 1.45 0.94
6 0.25 2.19 1.95 0.93 0.33 2.07 1.73 0.94 0.39 1.98 1.60 0.94

(30,15) 1 0.26 1.98 1.72 0.93 0.42 1.67 1.25 0.91 0.53 1.60 1.08 0.94
2 0.16 2.41 2.25 0.92 0.28 1.99 1.70 0.93 0.37 1.77 1.40 0.92
3 0.24 2.03 1.79 0.92 0.40 1.79 1.39 0.94 0.47 1.65 1.18 0.93
4 0.25 1.96 1.71 0.94 0.44 1.71 1.28 0.93 0.52 1.63 1.13 0.94
5 0.26 2.00 1.74 0.94 0.41 1.79 1.38 0.92 0.47 1.72 1.24 0.95
6 0.21 2.18 1.97 0.93 0.33 1.90 1.58 0.94 0.42 1.80 1.38 0.94

(40,15) 1 0.32 1.81 1.50 0.94 0.49 1.61 1.12 0.95 0.56 1.62 1.06 0.95
2 0.14 2.30 2.16 0.92 0.29 1.98 1.69 0.92 0.39 1.80 1.42 0.93
3 0.30 1.88 1.57 0.95 0.47 1.68 1.21 0.95 0.54 1.61 1.07 0.94
4 0.32 1.81 1.49 0.93 0.49 1.65 1.16 0.94 0.49 1.70 1.21 0.95
5 0.31 1.87 1.56 0.93 0.46 1.78 1.32 0.93 0.50 1.74 1.24 0.95
6 0.25 2.18 1.93 0.92 0.36 1.91 1.55 0.94 0.42 1.75 1.33 0.93

(50,15) 1 0.37 1.73 1.36 0.95 0.53 1.60 1.07 0.94 0.56 1.61 1.05 0.95
2 0.16 2.40 2.24 0.93 0.29 1.99 1.69 0.93 0.39 1.79 1.41 0.94
3 0.35 1.77 1.42 0.93 0.51 1.62 1.11 0.94 0.56 1.61 1.05 0.94
4 0.37 1.73 1.36 0.94 0.52 1.62 1.10 0.93 0.56 1.63 1.07 0.95
5 0.36 1.83 1.46 0.95 0.47 1.75 1.28 0.94 0.50 1.69 1.19 0.96
6 0.27 2.13 1.86 0.93 0.38 1.92 1.55 0.93 0.44 1.78 1.34 0.94

(40,20) 1 0.31 1.80 1.48 0.93 0.49 1.58 1.09 0.93 0.58 1.50 0.92 0.94
2 0.19 2.15 1.96 0.89 0.34 1.82 1.48 0.93 0.44 1.68 1.23 0.93
3 0.30 1.87 1.57 0.94 0.46 1.65 1.20 0.94 0.54 1.57 1.03 0.94
4 0.32 1.82 1.50 0.94 0.48 1.57 1.09 0.92 0.58 1.52 0.94 0.95
5 0.32 1.83 1.51 0.94 0.47 1.68 1.20 0.93 0.53 1.61 1.08 0.94
6 0.26 2.05 1.80 0.91 0.39 1.82 1.43 0.94 0.47 1.67 1.20 0.93

(50,20) 1 0.37 1.73 1.36 0.93 0.54 1.53 0.99 0.94 0.61 1.52 0.91 0.93
2 0.19 2.09 1.90 0.88 0.33 1.78 1.45 0.92 0.45 1.67 1.23 0.92
3 0.36 1.79 1.43 0.94 0.52 1.60 1.08 0.95 0.59 1.53 0.94 0.95
4 0.37 1.72 1.35 0.92 0.53 1.53 1.00 0.93 0.59 1.49 0.90 0.95
5 0.38 1.80 1.42 0.95 0.50 1.67 1.17 0.94 0.54 1.60 1.06 0.96
6 0.29 2.04 1.75 0.92 0.39 1.77 1.38 0.93 0.49 1.69 1.21 0.94

(50,25) 1 0.36 1.71 1.35 0.94 0.54 1.52 0.99 0.95 0.63 1.45 0.82 0.95
2 0.24 2.04 1.80 0.92 0.40 1.75 1.35 0.93 0.50 1.61 1.11 0.93
3 0.35 1.77 1.42 0.92 0.52 1.61 1.09 0.95 0.58 1.51 0.92 0.95
4 0.36 1.72 1.35 0.94 0.53 1.51 0.98 0.94 0.62 1.45 0.83 0.93
5 0.37 1.74 1.37 0.95 0.53 1.59 1.06 0.94 0.57 1.54 0.96 0.94
6 0.29 1.94 1.65 0.93 0.42 1.69 1.28 0.93 0.51 1.59 1.08 0.94

Real data illustration

In this section, we have considered a real data set from Lawless (2011) representing the sur-
vival times for ball bearings. The data given arose in tests on endurance of deep groove ball
bearings. The data are the number of million revolutions before failure for each of the 23 ball
bearings in the life tests and these are:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64,
68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40

Raqab and Madi (2011) indicated that the one-parameter Rayleigh distribution provides
a satisfactory fit to the given data set. We are assuming that the result of a random
experiment is reported with some imprecision and may be represented by fuzzy numbers
x̃i = (ai, bi, ci); i = 1, 2, . . . , k with membership function given as:

ξx̃i(x) =


x−(xi−h)

h ; xi − h ≤ x ≤ xi
(xi+h)−x

h ; xi ≤ x ≤ xi + h

0 ; otherwise

Where h = 0.05xi. It is worthwhile to mention here that for illustration of our methodology
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Table 5: Average Bayes Estimate of the parameter of Rayleigh distribution based on Type-
II progressive hybrid censored fuzzy lifetime data along with corresponding MSE’s for fixed
value of parameter ϑ = 1, T = 0.6, n = 40,m = 15 and with varying prior and censoring
scheme

Prior Scheme Estimate MSE LL UL HPD CP

1 1 1.0089 0.0689 0.52 1.54 1.03 0.96
2 1.0346 0.1017 0.36 1.80 1.44 0.97
3 1.0334 0.0769 0.50 1.61 1.11 0.95
4 1.0178 0.0716 0.51 1.57 1.05 0.94
5 1.0622 0.0951 0.50 1.68 1.19 0.95
6 1.0591 0.1007 0.42 1.77 1.35 0.96

2 1 1.0136 0.1014 0.49 1.59 1.11 0.93
2 1.0408 0.2188 0.28 1.93 1.65 0.91
3 1.0493 0.1106 0.47 1.68 1.21 0.93
4 1.0476 0.1048 0.50 1.65 1.15 0.94
5 1.0848 0.1463 0.46 1.78 1.32 0.93
6 1.0821 0.1794 0.36 1.91 1.55 0.95

3 1 1.0245 0.1068 0.49 1.61 1.12 0.93
2 1.0349 0.2254 0.27 1.93 1.66 0.91
3 1.0361 0.1126 0.46 1.67 1.21 0.93
4 1.0369 0.1117 0.49 1.64 1.15 0.93
5 1.0846 0.1561 0.46 1.78 1.32 0.93
6 1.0740 0.1884 0.35 1.89 1.54 0.93

we will censor the original data set. We have consider censored sample of size m = 11 and
seven different removal schemes.
Scheme 1: R1 = R2 = · · · = R10 = 0 and R11 = 12;
Scheme 2: R1 = 12 and R2 = R3 = · · · = R11 = 0;
Scheme 3: R1 = R2 = · · · = R10 = 1 and Rm = 2;
Scheme 4: R1 = R2 = · · · = R6 = 0, R7 = R8 = · · · = R10 = 2 and R11 = 4;
Scheme 5: R1 = · · · = R3 = 0 = R9 = · · · = R11 and R4 = R5 = 2 = R7 = R8, R6 = 4
Scheme 6: R1 = 4, R2 = · · · = R5 = 2 and R6 = R7 = · · · = R11 = 0
Also, maximum time of termination of experiment is prefixed as T = 68. For illustration
purpose lifetime of fail ball bearings, number of removals after each failure and lifetime of
removed unit of the scheme 7 are given in Table 6.

Table 6: Life times of ball bearings and removal scheme 7

Lifetime of Number of Lifetime of Lifetime of Number of Lifetime of
S.N. failed unit removals removed units S.N. failed unit removals removed units

(x) (R) (z) (x) (R) (z)

1. 17.88 2 68.88,93.12 7. 48.48 1 68.64
2. 28.92 0 8. 51.84 0
3. 33.00 1 55.56 9. 67.80 2 105.84,173.40
4. 41.52 2 54.12,127.92 10. 84.12 0
5. 42.12 0 11. 98.64 2 105.12,128.04
6. 45.60 2 51.96,68.64

We have obtained the MLE and MME by choosing suitable initial value of the parameter. To
obtain the Bayes estimate non-informative prior is considered because enough prior informa-
tion is not available. Average length of the HPD interval is also calculated. The ergodic mean,
posterior samples, posterior density, and histogram corresponding to the removal scheme 7 are
plotted in Figure 1 which shows that posterior of parameter ϑ is positively skewed, samples
are well mixed and after burn-in period ergodic mean of generated samples become nearly
constant. All results are summarized in Table 7.
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Table 7: MLE, MME, CAE and Bayes estimate of parameter ϑ along with its HPD interval
for real data set.

Scheme MLE MME CAE BE HPD

1 0.000188 0.000172 0.000192 0.000187 0.000214
2 0.000188 0.000174 0.000195 0.000187 0.000268
3 0.000166 0.000157 0.000168 0.000166 0.000205
4 0.000157 0.000149 0.000159 0.000156 0.000187
5 0.000137 0.000130 0.000140 0.000135 0.000180
6 0.000090 0.000086 0.000089 0.000088 0.000142
7 0.000160 0.000152 0.000163 0.000159 0.000199

5. Conclusion

In this paper, we have considered the problem of estimation in the presence of Type-II progres-
sive hybrid censored fuzzy sample. General procedure to obtain the estimators are provided
and then Rayleigh distribution is used to validate the results. We have found that Bayesian
procedure provides best estimate of the unknown parameter of the Rayleigh model with the
smallest MSE among all the four estimators and it is followed by the MLE, MME and CAE.
Average width of HPD intervals and coverage probabilities are also calculated and compared.
Besides this, another finding of this study is that the estimates based on non-informative prior
is less precise than that based on informative prior. It is seen that the removal scheme has
an effect on the performance of estimators. Hence, if it is possible to control the removals,
scheme with late removals should be chosen. However, the developed method can be used
with any removal scheme. The methodology developed in this paper is quite flexible since it
can be used with any distribution and will be very useful to the researchers, engineers, statis-
ticians and in the field of medical where such type of fuzzy data is observed. Application of
the developed methodology on Type-II progressive hybrid censored fuzzy data from another
distribution could be a fruitful future research.
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(trace plot), (c) Kernel density estimate from simulated sample of ϑ and (d) Histogram of
simulated sample of ϑ for real data set

Chung Y (1995). “Estimation of Scale Parameter from Rayleigh Distribution under Entropy
Loss.” Korean Journal of Computational and Applied Mathematics, 2(1), 33–40.

Cohen AC (1965). “Maximum Likelihood Estimation in the Weibull Distribution Based on
Complete and on Censored Samples.” Technometrics, 7(4), 579–588.

Cohen AC, Norgaard NJ (1977). “Progressively Censored Sampling in the Three-Parameter
Gamma Distribution.” Technometrics, 19(3), 333–340.

Davis HT, Feldstein ML (1979). “The Generalized Pareto Law as a Model for Progressively
Censored Survival Data.” Biometrika, 66(2), 299–306.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society. Series B (methodological),
pp. 1–38.

Denœux T (2011). “Maximum Likelihood Estimation from Fuzzy Data Using the EM Algo-
rithm.” Fuzzy sets and systems, 183(1), 72–91.

Dey S, Maiti SS (2012). “Bayesian Estimation of the Parameter of Rayleigh Distribution
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