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Abstract

We discuss a generalization of Goldstein-Kac model on a complex plane and apply
probabilistic approach to construct solutions of the corresponding Cauchy problem for
complex-analytic initial conditions. The method is based on reconstruction of complex-
analytic functions by combination of power functions, for which corresponding solutions
are the moments of evolution process.

As soon as in the hydrodynamic limit the equation for our model approximates a
Schrödinger-type equation, the solutions constructed for pre-limit Cauchy problem may
approximate solutions for corresponding Cauchy problem for a Schrödinger-type equation.

Keywords: Goldstein-Kac model, complex plane, Cauchy problem, complex-analytic initial
conditions, Schrödinger-type equation.

1. Introduction

Numerous works are devoted to the description of random evolutions (random flights) that
generalize original work Kac (1974) in the multidimensional case. They are mostly devoted
to discussion of convergence of the model studied to the Wiener process, also description
of corresponding equations and solving them for some well posed modes (Orsingher (1986),
Orsingher (2002), Orsingher and De Gregorio (2007), Orsingher and Sommella (2004), Ors-
ingher, Garra, and Zeifman (2020), Cinque and Orsingher (2023), Pinsky (1991), Pogorui
and Rodŕıguez-Dagnino (2019), Pogorui, Swishchuk, and Rodŕıguez-Dagnino (2021), Kolesnik
(2001), Kolesnik (2007), Kolesnik (2008), Kolesnik and Orsingher (2005), Samoilenko (2001a),
Samoilenko (2002) and many others). The main problem is that the methods for solving equa-
tions proposed there can not be applied for any model as soon as they are, as a rule, strictly
connected with the structure of the corresponding equation. In the article of Turbin and
Samoilenko (2000) we proposed to change the approach, namely to solve a well posed Cauchy
problem instead of a well posed equation. The idea is based on the use of real-analytic initial
conditions and computation of the moments of Markov random evolution (see also Samoilenko
(2001b)) which solve Cauchy problem for any evolutionary equation with pover functions as
initial conditions. Thus, having corresponding solutions, we may approximate solution for
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any initial condition by real-analytic functions.

Here we apply the method, proposed in Turbin and Samoilenko (2000) to equations that
appear in the case of Goldstein-Kac model on a complex plane, namely

γλ,vr,z (t) = x+ iy + v

t∫
0

(−1)ξ
λ
r (s)ds

+iv

t∫
0

(−1)ξ
λ
r (s)ds = z + (i+ 1)v

t∫
0

(−1)ξ
λ
r (s)ds,

where x + iy is the starting point, v > 0 is the constant velocity of movement, ξλr (s) is the
Markov chain that takes values in {0, 1} and has the infinitesimal matrix

Qλ = λ

(
−1 1
1 −1

)

and initial distribution P{ξλr (0) = 0} = p, P{ξλr (0) = 1} = q, r = p− q.
In Section 2 we show that the expectations of function of the evolution, namely the functionals
defined in (5) satisfy Cauchy problem:

∂2U

∂t2
+ 2λ

∂U

∂t
= 2iv2

∂2U

∂z2
(1)

U(0, z) = f(z),
∂

∂t
U(t, z)|t=0 = rv(1 + i)f ′(z).

In Section 3 this result is used to represent the solution to the Cauchy problem with complex-
analytic initial conditions: {

f(z) =
∑∞
k=0 fkz

k, z ∈ C;
g(z) =

∑∞
k=0 gkz

k, z ∈ C. (2)

Remark. Solution of this Cauchy problem, like in the case of the one-dimensional telegraph
equation, may be constructed by Riemann method in terms of Bessel functions (see, e.g.
Pinsky (1991), Orsingher (1986), Orsingher (2002), Orsingher et al. (2020), Lachal, Leorato,
and Orsingher (2006), Samoilenko (2001a)). But the probability approach proposed here is
based on the explicit calculation of arbitrary moments of the random process and allows to
avoid analytic difficulties and, moreover, to obtain new formulas for the Bessel functions. It
can also be used in the study of models described by equations that are more complex than the
one-dimensional telegraph equation.

There is also another reason for the construction of a new representation of the solution
of this Cauchy problem. Solution in terms of Bessel functions does not explicitly contain
boundary-layer functions, which is explained by the fact that Riemann method is based on
the analytic-geometric approach. The solutions constructed in the present paper explicitly
contain the regular and boundary-layer components that may be usefull for calculation of
approximate solutions.

Namely, a consequence of our representation of the solution of Cauchy problem is the following
result. We set ε = 1

2λ and write equation (1) in the form

ε
∂2

∂t2
U(t, z) =

(
i
v2

2λ

∂2

∂z2
− ∂

∂t

)
U(t, z). (3)

In the hydrodynamic limit (see Kac (1974), Korolyuk and Turbin (1993)), when v →∞, λ→
∞ so that v2

λ → σ2 equation (3) has the form of a singularly perturbed differential equation
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with a small parameter for the highest derivative with respect to t. In the limit, we have a
Schrödinger-type equation (see, e.g. free-particle wave equation):

∂

∂t
U(t, z) =

σ2

2
i
∂2

∂z2
U(t, z). (4)

Solutions of Schrödinger-type equations may be found in the form of series for corresponding
complex functions. Now we see that Schrödinger-type equation may be approximated by
a singularly perturbed differential equation with a small parameter as the coefficient of the
higher derivative with respect to t.

We show that the solution of Cauchy problem for the last equation also may be presented
as a series. Moreover, in the theory of singularly perturbed evolutionary equations, solutions
often contain a regular (with respect to ε) component and a boundary-layer component,
which contains a function of the form exp(−t/ε) (in our case, exp(−2λt) = exp(−t/ε)). The
solutions constructed in the present paper explicitly contain the regular and boundary-layer
components.

Thus, we will now construct solutions for complex-analytic initial conditions of Cauchy prob-
lem (1), (2). As soon as other functions may be approximated by complex-analytic functions,
we may thus approximate solutions for Cauchy problems with other initial conditions, and,
assuming ε → 0 we shall see approximate solution of Cauchy problem for Schrödinger-type
equation (4).

2. Cauchy problem for functionals of the evolution

Let us consider the functionals of the process γλ,vr,z (t) of the form

Uj(t, z) = Ejf(z + (i+ 1)v

∫ t

0
(−1)ξ

λ
r (s)ds), (5)

where j ∈ {0, 1} is the state of the process ξλr (s) at the moment of time s = 0.

Theorem 1. Let f be a continuously differentiable function with a compact support. Then
the functions Uj(t, z) defined in (5) satisfy the system of backward Kolmogorov equations:{

∂U0
∂t = (i+ 1)v ∂U0

∂z − λU0 + λU1
∂U1
∂t = −(i+ 1)v ∂U0

∂z − λU1 + λU0.
(6)

Proof. Consider the function U0(t, z) :

U0(t+4t, z) = E0f(z + (1 + i)v

∫ t+4t

0
(−1)ξ

λ
1 (s)ds)

= Ef(z + (1 + i)v[

∫ 4t
0

(−1)ξ
λ
1 (s)ds+

∫ t+4t

4t
(−1)ξ

λ
−1(s)ds]).

The probability that the state of the system will change during the time interval 4t is equal

to λ4 t, therefore, as soon as (−1)ξ
λ
−1 = (−1)1+ξ

λ
1 :

U0(t+4t, z) = (1− λ4 t)Ef(z + (i+ 1)v

∫ t+4t

4t
(−1)ξ

λ
1 (s)ds

+(i+ 1)v4 t) + λ4 tEf(z + (i+ 1)v

∫ t+4t

4t
(−1)(−1)ξ

λ
1 (s)ds+O(4t))

+o(4t),4t→ 0.
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Due to the fact that the process is stationary P{ξλ1 (t +4t) = k|ξλ1 (4t) = j} = P{ξλ1 (t) =
k|ξλ1 (0) = j}, thus we have:

U0(t+4t, z)− U0(t, z) = Ef(z + (i+ 1)v

∫ t

0
(−1)ξ

λ
1 (s)ds

+(i+ 1)v4 t)− Ef(z + (i+ 1)v

∫ t

0
(−1)ξ

λ
1 (s)ds)

−λ4 tEf(z + (i+ 1)v

∫ t

0
(−1)ξ

λ
1 (s)ds+ (i+ 1)v4 t)

+λ4 tEf(z + (i+ 1)v

∫ t

0
(−1)ξ

λ
−1(s)ds+O(4t)) + o(4t),4t→ 0.

Dividing by 4t and tending 4t→ 0 we have:

∂U0

∂t
= −λU0 + λU1 + (i+ 1)v

∂U0

∂z
.

It is necessary to justify the passage to the limit:

lim
4t→0

Ef(z + (i+ 1)v4 t+ v
∫ t
0(−1)ξ

λ
1 (s)ds)− Ef(z + v

∫ t
0(−1)ξ

λ
1 (s)ds)

4t

= E lim
4t→0

f(z + (1 + i)v4 t+ v
∫ t
0(−1)ξ

λ
1 (s)ds)− f(z + v

∫ t
0(−1)ξ

λ
1 (s)ds)

4t

= (i+ 1)vE0f
′
z =

∂U0

∂z
(i+ 1)v.

The limit can be carried under the expectation sign due to Lebesgue’s theorems on passage
to the limit under the integral sign, pointwise convergence of the expression under the sign
of mathematical expectations to (i + 1)vf ′z (because f is continuously differentiable) and
boundedness of the integrand, which is different from 0 on a compact support.

By analogy, we have ∂U1
∂t = −(i+ 1)v ∂U1

∂z − λU1 + λU0. This completes the proof of Theorem
1.

According to the result in Kolesnik and Turbin (1991) (see also Pinsky (1991)), the functions
satisfying system (6) satisfy equation:

det

(
∂
∂t + λ− v(1 + i) ∂∂z −λ

−λ ∂
∂t + λ+ v(1 + i) ∂∂z

)
U(t, z) = 0,

where U(t, z) means Uj(t, z), j = 0, 1.

Calculating the determinant, we have:

∂2U

∂t2
+ 2λ

∂U

∂t
= 2iv2

∂2U

∂z2
(7)

Let us formulate the Cauchy problem for equation (7), whose solutions are the functions
Uj(t, z). From the definition of functions we have: Uj(t, z) = Ejf(z + (i + 1)v

∫ t
0(−1)ξ(s)ds)

and for t = 0 we get Uj(0, z) = Ejf(z) = f(z). For initial distribution P{ξ(0) = 0} =
p, P{ξ(0) = 1} = q we get U(0, z) = pU0(0, z) + qU1(0, z) = f(z).

From the system of backward Kolmogorov equations we have:

∂U0(t, z)

∂t
|t=0 = −λU0(t, z)|t=0 + λU1(t, z)|t=0

+(i+ 1)v
∂U0(t, z)

∂z
|t=0 = −λf(z) + λf(z) + (i+ 1)vE0f

′
z|t=0
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= (i+ 1)vE0f
′
z(z) = (i+ 1)vf ′z(z).

By analogy, ∂U1(t,z)
∂t |t=0 = −(i + 1)vf ′z(z). Taking into account the initial distribution, we

have: U ′t(t, z)|t=0 = p(U0)
′
t − q(U1)

′
t = (p− q)(i+ 1)vf ′(z) = (i+ 1)vrf ′(z).

Thus, the Cauchy problem for equation (7) has the form:

U(0, z) = f(z), U ′t(t, z)|t=0 = (i+ 1)vrf ′(z). (8)

We proved the following theorem.

Theorem 2. The function U(t, z) = pU0(t, z) + qU1(t, z) satisfies equation (7) with initial
conditions (8).

3. Solution of Cauchy problem

Let cλ,vr (t, z;n) = E
(
γλ,vr,z (t)

)n
, then the function cλ,vr (t, z;n) solves equation (7) with initial

conditions
f(z) = zn; g(z) = rv(i+ 1)nzn−1. (9)

If r = 0, and thus in (9) g(z) = 0, then the solution U(t, z) of the Cauchy problem

U(0, z) = f(z), U ′t(t, z)|t=0 = 0 (10)

with complex analytic function f(z) =
∑∞
k=0 fkz

k has the form

u0(t, z) =
∞∑
k=0

fkc
λ,v
0 (t, z; k).

If r 6= 0 then the function 1
rvm(i+1)

[
cλ,vr (t, z;m)− cλ,v0 (t, z;m)

]
for m ≥ 1 is a solution of

equation (7) with initial conditions

f(z) = 0, g(z) = zm−1

and then the function

ur(t, z) =
∞∑
m=1

gm−1
rvm(i+ 1)

[
cλ,vr (t, z;m)− cλ,v0 (t, z;m)

]
solves (7) with initial conditions

f(z) = 0, g(z) =
∞∑
m=1

gm−1z
m−1.

Hence the function

u0(t, z) + ur(t, z) = f0c
λ,v
0 (t, z; 0) +

∞∑
k=1

[fkc
λ,v
0 (t, z; k) +

gk−1
rvk(i+ 1)

(
cλ,vr (t, z; k)− cλ,v0 (t, z; k)

)
]

is the solution of (7) with initial conditions f(z) =
∑∞
k=0 fkz

k, g(z) =
∑∞
k=0 gkz

k. Since the

function g0
2λ

(
1− e−2λt

)
solves (7) with initial conditions f(z) = 0, g(z) = g0 we arrive at the

next result.

Theorem 3. Let cλ,vr (t, z;n) be a solution of equation (7) with initial conditions (9). Then
the solution U(t, z) of the Cauchy problem (8) with complex analytic conditions (2) is given
by

U(t, z) = f0 +
g0
2λ

(
1− e−2λt

)
+
∞∑
k=1

[fkc
λ,v
0 (t, z; k) +

gk−1
rvk(i+ 1)

(
cλ,vr (t, z; k)− cλ,v0 (t, z; k)

)
].

(11)



76 Analytic Solutions of Equation for Random Evolution

The problem of constructing the solution is thus reduced to calculating the moments cλ,vr (t, z; k)
of evolution defined by Kac model on a complex plane.

4. Moments of evolution on a complex plane

In this section we use the ideas of the article Turbin and Samoilenko (2000) to calculate
moments of evolution on a complex plane. Note that the trivial substitution of new coefficients
into the formulas of the work Turbin and Samoilenko (2000) does not give the desired result.

Lemma 1. The following equality holds true:

lim
λ→∞
v→∞
v2

λ
→σ2

cλ,vr (t, z;n) =

[n2 ]∑
j=0

(
n

2j

)
zn−2jµ2j

(
σ2t
)j

(i+ 1)j , (12)

where [p] is the integer part of p,

µ2j =

{
1 · 3 · . . . · (2j − 1) if j is an even number;
0 if j is an odd number.

Proof. By definition

cλ,vr,z = E

(
z + v(i+ 1)

∫ t

0
(−1)ξ

λ
r (s)ds

)n
=

n∑
j=0

(
n

j

)
zn−jE

(
v(i+ 1)

∫ t

0
(−1)ξ

λ
r (s)ds

)j
.

From the weak convergence of the process v
∫ t
0(−1)ξ

λ
r (s)ds for λ → ∞, v → ∞, v2

λ → σ2 to
the Wiener process (see Kac (1974), Pinsky (1991)) σw(t), V ar w(t) = t, it follows that

lim
λ→∞
v→∞
v2

λ
→σ2

E

[
v(i+ 1)

∫ t

0
(−1)ξ

λ
r (s)ds

]n
= (i+ 1)nµn

(
σ2t
)n
,

which gives (12). The proof of Lemma 1 is complete.

The lemma allows one to seek a solution to equation (7) with initial conditions (9) in the
form (see also Samoilenko (2001b), Kolesnik (2012)):

cλ,vr (t, z;n) = zn +
rvnzn−1

2λ

(
1− e−2λt

)
(i+ 1) +

[n2 ]∑
j=1

(
n

2j

)
zn−2jµ2j

(
v2

λ
t

)j
(i+ 1)j

+an(t, z) + bn(t, z)
(
1− e−2λt

)
, (13)

where the functions an(t, z) and cn(t, z) are polynomials in z (for a fixed t) and in t (for a
fixed z) which degree is at most n− 2. Since cλ,vr (0, z;n) = zn, then the condition

a(0, z) = 0 (14)

must be necessarily true. Differentiating (13) with respect to t, we find

∂

∂t
cλ,vr (t, z;n) = rv(i+ 1)nzn−1e−2λt +

[n2 ]∑
j=1

(
n

2j

)
zn−2jjµ2j

(
v2

λ

)j
tj−1(i+ 1)j

+
∂

∂t
a(t, z) +

(
∂

∂t
b(t, z)

)(
1− e−2λt

)
− 2λb(t, z)e−2λt.

As soon as ∂
∂tc

λ,v
r (t, z;n)

∣∣∣
t=0

= rv(i + 1)zn−1, we obtain one more condition on an(t, z) and

cn(t, z): (
n

2

)
zn−2µ2

(
v2

λ

)2

(i+ 1) +
∂

∂t
an(t, z)

∣∣∣∣
t=0

= 2λbn(0, z). (15)
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Theorem 4. The functions an(t, z) and bn(t, z) are given by:

if n is even:

an(t, z) =

n
2
−1∑
j=1

n
2
−j∑

k=1

l
(k)
j zn−2(k+j)tk(i+ 1)2(k+j) +

n
2
−2∑
j=0

n
2
−j−1∑
k=1

d
(k)
j zn−2(k+j)−1tk(i+ 1)2(k+j)+1,

bn(t, z) =

n
2
−1∑
j=0

n
2
−j∑

k=1

e
(k)
j zn−2(k+j)tk−1(i+ 1)2(k+j) +

n
2
−1∑
j=1

n
2
−j∑

k=1

f
(k)
j zn−2(k+j)+1

×tk−1(i+ 1)2(k+j)−1 +

n
2∑

k=2

f
(k)
0 zn−2k+1tk−1(i+ 1)2k−1;

if n is odd:

an(t, z) =

[n2 ]−1∑
j=1

[n2 ]−j∑
k=1

l
(k)
j zn−2(k+j)tk(i+1)2(k+j)+

[n2 ]−2∑
j=0

[n2 ]−j−1∑
k=1

d
(k)
j zn−2(k+j)−1tk(i+1)2(k+j)+1,

bn(t, z) =

[n2 ]−1∑
j=0

[n2 ]−j∑
k=1

e
(k)
j zn−2(k+j)tk−1(i+ 1)2(k+j) +

[n2 ]∑
j=1

[n2 ]−j+1∑
k=1

f
(k)
j zn−2(k+j)+1

×tk−1(i+ 1)2(k+j)−1 +

[n2 ]+1∑
k=2

f
(k)
0 zn−2k+1tk−1(i+ 1)2k−1.

Here

e
(1)
j =

l
(1)
j

2λ
;

e
(k)
j =

1

2λ(k − 1)

(
e
(k+1)
j−1 · k · (k − 1)− v2e(k−1)j · (n− 2(k + j − 1))

×(n− 2(k + j − 1)− 1)) , k 6= 1;

l
(k)
j =

1

2λk

(
2λe

(k+1)
j−1 · k − l

(k+1)
j−1 · (k + 1) · k + e

(n+1)
j−2 · (k + 1) · k

+v2l
(k−1)
j · (n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1)

−v2e(k)j−1 · (n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1));

f
(1)
j =

d
(1)
j−1
2λ

;

f
(k)
j =

1

2λ(k − 1)

(
f
(k+1)
j−1 · k · (k − 1)− v2f (k−1)j · (n− 2(k + j − 1) + 1)

×(n− 2(k + j − 1))) , k 6= 1;

d
(k)
j =

1

2λk

(
2λf

(k+1)
j · k − d(k+1)

j−1 · (k + 1) · k

+f
(k+2)
j−1 · (k + 1) · k + v2d

(k−1)
j · (n− 2(k + j − 1)− 1) · (n− 2(k + j − 1))

−v2f (k)j · (n− 2(k + j) + 1)(n− 2(k + j))).

In doing so, we assume b
(k)
0 =

( n
2k

)
µ2k

(
v2

λ

)k
, k = 0, . . . ,

[
n
2

]
and , f

(1)
0 = − rvn

2λ , and in the

case when k and j go beyond the specified limits of change we put b
(k)
j = d

(k)
j = e

(k)
j = f

(k)
j = 0.
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Proof. We put νn(t, z) =
[n2 ]∑
k=1

( n
2k

)
zn−2kµ2k

(
v2

λ t
)k

(i + 1)2k + an(t, z), then cλ,vr (t, z;n) =

zn + rv(i+1)nzn−1

2λ

(
1− e−2λt

)
+ νn(t, z) + bn(t, z)

(
1− e−2λt

)
.

Substitute this expression into equation (7), and then group and equate the free terms and
the terms at e−2λt. We get:

∂2

∂t2
bn − 2λ

∂

∂t
bn = (i+ 1)2v2

∂2

∂z2
bn −

n(n− 1)(n− 2)rv3(i+ 1)3zn−3

2λ
(16)

and
∂2

∂t2
νn −

∂2

∂t2
bn + 2λ

∂

∂t
νn − 2λ

∂

∂t
bn = v2(i+ 1)2(n− 1)nzn−2

+
n(n− 1)(n− 2)rv3(i+ 1)3zn−3

2λ
+ v2(i+ 1)2

∂2

∂z2
νn − v2(i+ 1)2

∂2

∂z2
bn. (17)

Equality (15) may now be written as:

∂

∂t
νn(t, z)

∣∣∣∣
t=0

= 2λbn(0, t). (18)

The polynomial νn(t, z) includes the sum
∑[n2 ]
k=1

( n
2k

)
zn−2kµ2k

(
v2

λ t
)k

(i + 1)2k, denote the

coefficient of zn−2ktk(i+ 1)2k by l
(k)
0 . Since in relations (16) and (17) connecting polynomials

νn and bn, differentiation with respect to z is performed twice, the degree of each next term in
z will be 2 less than the previous one, so the coefficient of zn−2(k+j)tk(i+ 1)2(k+j) is denoted

by l
(k)
j .

It can be seen from (18) that the polynomial bn(t, z) contains the term
l
(1)
0
2λ z

n−2, denote

e
(1)
0 =

l
(1)
0
2λ , and similarly to the previous one, the coefficient for zn−2(k+j)tk−1(i+ 1)2(k+j) via

e
(k)
j . If in relation (16) we collect the coefficients at the powers of z and t coinciding after

differentiation, we get:

e
(k+1)
j−1 · (k − 1) · k − 2λ(k − 1)e

(k)
j = v2e

(k−1)
j · (n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1).

Since coefficients with smaller indices were found earlier, for example, e
(1)
0 is already known,

while e
(3)
−1 is set equal to 0 (j goes beyond the specified limits of change), e

(2)
0 can be found,

we have:

e
(k)
j =

1

2λ(k − 1)

(
e
(k+1)
j−1 · k · (k − 1)− v2e(k−1)j · (n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1)

)
.

Since the degree of z is reduced by 2 when differentiating, the term with zk−3 does not yet

occur, and therefore the presence of the expression n(n−1)(n−2)rv3(i+1)3zn−3

2λ in relations (16)
and (17) is taken into account below.

Similarly, collecting the coefficients in (17), we obtain:

l
(k+1)
j−1 · (k + 1) · k − e(k+1)

j−2 · (k + 1) · k + 2λl
(k)
j k − 2λe

(k+1)
j−1

= v2(i+ 1)2l
(k−1)
j · (n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1)− v2(i+ 1)2e

(k)
j−1

×(n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1).

Since we know coefficients of lower indices, e.g. l
(k)
0 and e

(k)
0 , we have:

l
(k)
j =

1

2λk

(
2λe

(k+1)
j−1 · k − l

(k+1)
j−1 · (k + 1) · k + e

(k+1)
j−2 · (k + 1) · k
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+v2(i+ 1)2l
(k−1)
j · (n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1)− v2(i+ 1)2e

(k)
j−1

×(n− 2(k + j − 1)) · (n− 2(k + j − 1)− 1)).

Then from (18) we find e
(1)
j =

l
(1)
j

2λ and repeat the same procedure. The limits of k and j can
be found from the considerations that polynomials have degree at most n− 2 and variables z
and t cannot have degree less than 0.

However, relations (16) and (17) contain term n(n−1)(n−2)rv3(i+1)3zn−3

2λ which will give its

contribution to νn(t, z) and bn(t, z). Denote f
(1)
0 = − rvn

2λ - coefficient at zn−1
(
1− e−2λt

)
(i+

1), and in general f
(k)
j - coefficient at zn−2(k+j)+1tj−1

(
1− e−2λt

)
(i+ 1)2(k+j)−1, and d

(k)
j - at

zn−2(k+j)−1tk(i+ 1)2(k+j)+1. Applying the above procedure, we obtain the required relations.
The proof of Theorem 4 is complete.

In conclusion, we present equation (7) in the form of a singularly perturbed Cauchy problem:

ε2
∂2

∂t2
U(t, z) =

(
σ2

2
i
∂2

∂z2
− ∂

∂t

)
U(t, z)

U(0, z) = f(z),
∂

∂t
U(t, z)

∣∣∣∣
t=0

= r
σ√
2ε

(i+ 1)f ′(z), r ∈ R.

Using Theorem 4, we present solutions of this Cauchy problem for conditions of independent
interest (in square brackets the regular part of the solution is distinguished):

f(z) = z : U(t, z) =

[
z +

r√
2
σε(i+ 1)

]
− r√

2
σε(i+ 1)e−

t
ε2 ;

f(z) = z2 : U(t, z) =
[
z2 + σ2t(i+ 1)2 + rσ

√
2εz(i+ 1)− σ2ε2(i+ 1)2

]
+
(
σ2ε2(i+ 1)2

−rσ
√

2εz(i+ 1)
)
e−

t
ε2 ;

f(z) = z3 : U(t, z) =

[
z3 + 3zσ2t− 3xσ2ε2(i+ 1)2 +

3r√
2
σεz2(i+ 1)2 − 3r√

2
σ3ε3(i+ 1)3

]

+(3zσ2ε2(i+ 1)2 − 3r√
2
σεz2(i+ 1) +

3r√
2
σ3εt(i+ 1)3 +

3r√
2
σ3ε3(i+ 1)3)e−

t
ε2 .

If we put ε→ 0 we easily see the solutions of Cauchy problem for Schrödinger-type equation
(6).
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Pogorui AA, Rodŕıguez-Dagnino RM (2019). “Goldstein-Kac Telegraph Equations and
Random Flights in Higher Dimensions.” Applied Mathematics and Computation,
361, 617–629. URL https://www.sciencedirect.com/science/article/abs/pii/

S0096300319304473.

Samoilenko IV (2001a). “Markovian Random Evolution in Rn.” Random Operators and
Stochastic Equations, 9(2), 139–160. URL https://www.degruyter.com/document/doi/

10.1515/rose.2001.9.2.139/html.

Samoilenko IV (2001b). “Moments of Markov Random Evolutions.” Ukrainian Mathemati-
cal Journal, 53(7), 1197–1205. URL https://link.springer.com/article/10.1023/A:

1013341602187.

Samoilenko IV (2002). “Fading Markov Random Evolution.” Ukrainian Mathemati-
cal Journal, 54(3), 448–459. URL https://link.springer.com/article/10.1023/A:

1020517601268.

Turbin AF, Samoilenko IV (2000). “A Probability Method for the Solution of the Telegraph
Equation with Real-Analytic Initial Conditions.” Ukrainian Mathematical Journal, 52(8),
1292–1299. URL https://link.springer.com/article/10.1023/A:1010313423230.

Affiliation:

Igor Samoilenko
Faculty of Computer Science and Cybernetics
Taras Shevchenko National University of Kyiv
Akademika Hlushkova Ave, 4d, Kyiv, Ukraine, 03680
E-mail: isamoil@i.ua
URL: http://csc.univ.kiev.ua/en/person/samoilenko

Ganna Verovkina
Faculty of Mechanics and Mathematics
Taras Shevchenko National University of Kyiv
Akademika Hlushkova Ave, 4e, Kyiv, Ukraine, 03680
E-mail: ganna.verov@gmail.com
URL: http://www.matfiz.univ.kiev.ua/department/10

Tetiana Samoilenko
Faculty of Physics and Mathematics
National Technical University of Ukraine
“Igor Sikorsky Kyiv Polytechnic Institute
Polytekhnichna str., 14, building 7, Kyiv-56, Ukraine, 03056
E-mail: tsamoil27@gmail.com

Austrian Journal of Statistics http://www.ajs.or.at/

published by the Austrian Society of Statistics http://www.osg.or.at/

Volume 52 Submitted: yyyy-mm-dd
2023 Accepted: yyyy-mm-dd

https://www.sciencedirect.com/science/article/abs/pii/S0096300319304473
https://www.sciencedirect.com/science/article/abs/pii/S0096300319304473
https://www.degruyter.com/document/doi/10.1515/rose.2001.9.2.139/html
https://www.degruyter.com/document/doi/10.1515/rose.2001.9.2.139/html
https://link.springer.com/article/10.1023/A:1013341602187
https://link.springer.com/article/10.1023/A:1013341602187
https://link.springer.com/article/10.1023/A:1020517601268
https://link.springer.com/article/10.1023/A:1020517601268
https://link.springer.com/article/10.1023/A:1010313423230
mailto:isamoil@i.ua
http://csc.univ.kiev.ua/en/person/samoilenko
mailto:ganna.verov@gmail.com
http://www.matfiz.univ.kiev.ua/department/10
mailto:tsamoil27@gmail.com
http://www.ajs.or.at/
http://www.osg.or.at/

	Introduction
	Cauchy problem for functionals of the evolution
	Solution of Cauchy problem
	Moments of evolution on a complex plane

