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Abstract

The article addresses the problem of parameter estimation of the inverse Lindley distri-
bution when the observations are fuzzy. The estimation of the unknown model parameter
was performed using both classical and Bayesian methods. In the classical approach, the
estimation of the population parameter is performed using the maximum likelihood (ML)
method and the maximum product of distances (MPS) method. In the Bayesian setup,
the estimation is obtained using the squared error loss function (SELF) with the Markov
Chain Monte Carlo (MCMC) technique. Asymptotic confidence intervals and highest
posterior density (HPD) credible intervals for the unknown parameter are also obtained.
The performances of the estimators are compared based on their MSEs. Finally, a real
data set is analyzed for numerical illustration of the above estimation methods.

Keywords: inverse Lindley distribution, maximum likelihood (ML), maximum product of spac-
ings (MPS), asymptotic confidence intervals, HPD credible intervals, Markov chain Monte
Carlo (MCMC).

1. Introduction

In statistics, estimation refers to the process of drawing inferences about a population. These
inferences arebased on the information obtained from a sample that is drawn from the same
population. Numerous estimation methods are available in literature along with their advan-
tages and disadvantages. Some well-known estimation methods are the method of maximum
likelihood, method of least square, method of moments, etc. Out of all these methods, method
of ML is the most widely used method of estimation due to its various useful properties. But
in certain situations, MLE ceases to perform satisfactorily. Various authors have noted the
limitations of MLE in different contexts. For example, MLE performs efficiently only when
the likelihood is bounded above. It does not perform satisfactorily for “heavy-tailed” dis-
tributions with unspecified scale and location parameters (see Pitman (1979)) and provides
inconsistent results for small samples. Cheng and Traylor (1995) have remarked that MLE
fails to estimate three-parameter distributions, like gamma, Weibull, and lognormal.

To overcome the drawbacks of MLE, Cheng and Amin (1983) introduced the MPS method
of estimation. Several useful properties of the MPS estimator were also discussed by them.
They showed that MPS provides a consistent and asymptotically efficient estimator in both
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situations whether MLE exists or not. When the MLE exists, MPS gives consistent estimators
with asymptotic efficiency equal to MLE, and if it does not then also MPS provides consistent
results. The concept of the MPS estimator was also developed simultaneously by Ranneby
(1984) using the Kullback-Leibler measure of information. Anatolyev and Kosenok (2005)
have shown that the MPS estimator is more efficient than MLE for small samples. Since we
are using the product of spacings which is always bounded owing to the properties of CDF
there is no compulsion of checking the above boundedness, as in the case of MLE. Considering
all these facts, we can say that the method of MPS possesses asymptotic properties like MLE
and overcomes all shortcomings of MLE.

Statistical modeling is an essential part of data handling. It covers inherent randomness in
the data and has universal applications in every branch of science. We encounter several
continuous variables in our daily life, which are examined in miscellaneous prospects. Every
measurement of a continuous variable is assumed to be a precise number. This assumption is
not appropriate since continuous phenomenons cannot be measured precisely. Countless so-
phisticated tools have been developed to get precise measurements. Still, the results obtained
are more or less imprecise and are called fuzzy. Therefore, we can say that two types of uncer-
tainties may be incorporated in the observed data, one is variation among the observations and
the other is the imprecision of the individual observation called fuzziness. Although plenty of
methods have been evolved to model the uncertainty due to variation among observations sta-
tistical literature discussing uncertainty due to imprecision or vagueness of observed data was
scarcely available.However, a remarkable upsurge has been experienced during the last few
decades after the introduction of the concept of fuzzy sets by Zadeh (1965) who developed it
as the generalization of the classical crisp sets. After that, he discussed many related concepts
and associated methodologies in his subsequent articles and popularized it (see; Zadeh (1965,
1968, 1983, 1987, 1996, 1999, 2008, 2011), Yager and Zadeh (2012), Zadeh, Fu, and Tanaka
(2014)). Although initially it was introduced as a mathematical concept, soon it was adopted
by different branches of science since it works in those situations where usual methods fail to
provide any result or some approximation is used to convert the data into a particular form
that can be analyzed regularly.

Primary sources of vagueness, un-ambiguity, non-preciseness, or simply fuzziness in observed
data are experimental errors, human errors, the precision of measurement, and several other
practical difficulties such as linguistic descriptions, measurement of continuous variables in
the form of precise numbers, etc. In life testing experiments, sometimes due to the shortage of
experimental material, their failure times are directly observed by the users after purchasing
the product. We cannot expect that the user will observe and report the failure time of the
product with precision. We try to explore such type of situation by the following example.
We try to explore such type of situation by the following example. In survival analysis,
suppose we want to know the failure time of an item from its consumer. It can be reported
as “approximately between 99 hours to 101 hours”, “about 100 hours” etc. We may note that,
although these observations are not precise, their representation in this form seems logical in
the sense that the lifetime of an experimental unit is a continuous variable and hence cannot
be an exact number. Depending upon the preciseness of the measurement, it will always have
some errors.Therefore, whenever we represent the lifetime of an experimental unit as an exact
number, some error gets incorporated instantaneously, as also indicated by Barbato, Germak,
and Genta (2013). For example, suppose the exact failure time of an item in survival analysis
is reported as 100 hours. It can be argued that no value can be measured as absolutely 100.
There will always be a difference between true and reported value. Hence, the reported value
is nothing but an approximation of the exact value. In fact, it corresponds to any value
between 99 hours to 101 hours i.e. more than 99 hours but less than 101 hours. Moreover, it
should be very clear that all the methods of estimation which are available in the literature
cannot be utilized to analyze such type of imprecise data. A suitable method of incorporating
the ambiguity in standard methods is the fuzzy set theory proposed by Zadeh (1965). A fuzzy
number is a generalization of a regular, real number in the sense that it does not refer to one
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single value but rather to a connected set of possible values, where each possible value has its
own weight between 0 and 1. In this sense, the theory of fuzzy sets generalizes the concept
of indicator function by relating a grade of membership between [0, 1] defined in terms of
the membership function of a fuzzy number. In mathematical form, a membership function
corresponding to a fuzzy number is nothing but a functional form that can take values between
[0, 1]. These membership functions are flexible, and the transition from true to false is more
gradual than the usual crisp values. A fuzzy set can be represented graphically with the help
of its membership function. In mathematical terminology, a fuzzy number say A denoted as
Ã, of the set of real numbers R and is characterized by membership function ξÃ(x) which
associates with each point in A, a real number in interval [0, 1], with the value of ξÃ(x) at
each x representing the grade of membership of x in A. There is no fixed rule in the literature
to select the membership function corresponding to a fuzzy number, and it solely depends
upon the concerned problem. Any kind of priori information is very helpful in deciding the
shape of the membership function. Membership functions represent the simple events usually
observed in real-life situations. Therefore, simple functions are used as membership functions.
The most common membership functions are triangular, trapezoidal, Gaussian, bell-shaped,
etc. A L − R fuzzy membership function is the one that specifies the membership function
with the help of two functional forms. In generalized notations, a L − R fuzzy membership
function is given as follows:

ξ
Ã

(x) =



0 if x < a1

β
Ã

(x) if a1 ≤ x < a2

1 if a2 ≤ x < a3

γ
Ã

(x) if a3 ≤ x < a4

0 if a4 < x

where β
Ã

(x) is a non-decreasing and γ
Ã

(x) is a non-increasing function. For different func-
tional forms, the above stated general membership function will reduce to the triangular,
trapezoidal, Gaussian or bell shaped membership functions. For more detailed description of
the basic concepts of fuzzy logic, readers are referred to; Dubois (1980), Dubois and Prade
(1998), Zimmermann (2001), Buckley (2006), Lee (2006), Nguyen and Wu (2006), Viertl
(2011).

In the last few decades, fuzzy logic gained popularity in every branch of science. Singpurwalla
and Booker (2004) provided a detailed description of the membership function. Estimation
of reliability in Bayesian setup, when the available data is fuzzy, was discussed by several
authors such as Hryniewicz (1986), Viertl (1997), Huang, Zuo, and Sun (2006), Viertl (2009),
Pak, Parham, and Saraj (2014b). Coppi, Gil, and Kiers (2006) presented some applications
of fuzzy techniques in statistical analysis. Denœux (2011) considered the MLE based on fuzzy
data using the EM algorithm. Taheri and Zarei (2011) considered the Bayesian estimation of
failure rate and mean time to failure based on vague set theory in the case of complete and
censored data sets. Pak, Parham, and Saraj (2013b), Pak, Parham, and Saraj (2013a), Pak,
Parham, and Saraj (2014a), Pak and Chatrabgoun (2016) discussed the inferential procedures
of a number of lifetime distributions under both classical and Bayesian setup using complete
as well as censored fuzzy data. Recently, Chaturvedi, Singh, and Singh (2018) obtained the
inferences of type-II progressively hybrid censored fuzzy data using Rayleigh distribution.

In the present piece of work, the lifetime of units understudy is denoted by the random variable
X. It is governed by the inverse Lindley distribution,denoted as ILD(θ). An ILD(θ) variate X
may be obtained by inverting a Lindley(θ) variate (see; Ghitany, Atieh, and Nadarajah (2008)
) or by mixing inverse exponential distribution with scale parameter θ and inverse Gamma
distribution with shape parameter 2 and scale parameter θ in the proportion θ/(1 + θ) (see;
Sharma, Singh, Singh, and Agiwal (2015)). They have discussed the properties of the ILD(θ)
and also justified its suitability in a real scenario using two different real data sets. The
novelty of the distribution lies in the fact that it possesses a single parameter like exponential
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Figure 1: Probability density function, Cumulative density function, Hazard function and
Reliability function of ILD(θ) for different values of θ

distribution, but in contrast to the constant hazard rate of the exponential distribution, it
has a uni-modal, non-monotone, up-side-down bathtub (UBT) shape for hazard rate. The
probability density function (PDF) and cumulative distribution function (CDF) of ILD(θ) are
given respectively as:

f(x; θ) =
θ2

(1 + θ)

(
1 + x

x3

)
e−

θ
x ; x > 0, θ > 0 (1)

F (x; θ) =

[
1 +

θ

(1 + θ)x

]
e−

θ
x ; x > 0, θ > 0 (2)

where θ is the scale parameter. The expressions of reliability and hazard rate of ILD(θ) are
also available in nice closed form and hence depicts its suitability for modeling lifetime data.

R(x; θ) = 1−
[
1 +

θ

(1 + θ)x

]
e−

θ
x ; x > 0, θ > 0 (3)

H(x; θ) =
θ2(1 + x)

x2
[
x(1 + θ)

(
e
θ
x − 1

)
− θ
] ; x > 0, θ > 0 (4)

The specific aim of the present study is to develop classical and Bayesian estimation procedures
for estimating the parameters of inverse Lindley distribution in the presence of vague or
imprecise data. For this purpose, we have discussed the computation procedure of MLE
of the population parameter. It is worthwhile to mention that we have proposed the well-
known MPS estimator for imprecise data. Approximate confidence intervals for the unknown
parameter are also obtained by using the asymptotic distributions of the MLE and MPS.
Further, parameter estimate is also obtained in the Bayesian setup, and it is noticed that the
Bayes estimators cannot be obtained in explicit form; therefore, we have used the MCMC
technique to compute the Bayes estimates and construct the HPD credible interval of the
parameter.In addition to it, the estimated reliability and hazard rate are also obtained under
classical and Bayesian setup. The rest of the paper is organized as follows: In section 2, MLE
and MPS estimates and their corresponding approximate confidence intervals are obtained by
using their property of asymptotic normality. Section 3 discusses the estimation of parameters
under the Bayesian setup. An overview of the simulation study followed by a real data
illustration is given in Section 4. Finally, conclusions and recommendations are provided in
section 5.
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2. Classical estimation

In classical estimation, the unknown parameter is assumed to be deterministic or non-random,
which means that randomness in the measurement is solely due to noise and not parameter
variations. The purpose of estimation is to obtain an approximate value of the population
parameter based on observations from the parent population. In this section, we will consider
two different methods of classical estimation, MLE and MPS methods.

2.1. Maximum likelihood estimate

Let X1, X2, . . . , Xn be a sequence of independent observations on a random variable X having
the CDF and PDF given in Eqs. (2) and (1) respectively. If realizations of X1, X2, . . . , Xn

say x1, x2, . . . , xn are observed exactly then the likelihood equation is given as:

l(x; θ) =

(
θ2

1 + θ

)n
e
−θ
∑n
i=1

1
xi

n∏
i=1

(
1 + xi
x3i

)
; x, θ > 0 (5)

But here, we are assuming that we have vague knowledge of the observed values of the variable.
As they are not in the precise form and reported with some error, i.e., the investigator can
only provide approximate lifetimes of the items as guess values by specifying a small interval
around the observed value. Besides, this interval is formed by the investigator according to
his belief in various values of the interval. Such a type of ambiguity in the observed data
can be successfully modeled with the help of the membership function of a fuzzy number.
Therefore we may assume that the observed data is fuzzy and the inherent variability is
incorporated in the form of possibility distribution. Let x̃1, x̃2, . . . , x̃n denotes the observed
fuzzy lifetimes where x̃i = (ai, bi, ci); i = 1, 2, . . . , n, with the corresponding membership
functions ξx̃1(.), ξx̃2(.), . . . , ξx̃n(.) such that

ξx̃i(x) =


x−(xi−h)

h ; xi − h ≤ x ≤ xi
(xi+h)−x

h ; xi ≤ x ≤ xi + h

0 ; otherwise

where h can be chosen suitably according to the prior knowledge available to us. Naturally,
the value of the factor h will vary from problem to problem depending upon its nature and
extent of error in the observed data. Therefore, the joint membership function of observed
fuzzy data vector x̃ = {x̃1, x̃2, . . . , x̃n} can be written as:

ξx̃(x) =

n∏
i=1

ξx̃i(x) (6)

Following the definition of probability of a fuzzy event by Zadeh (1968), the likelihood function
of the observed fuzzy data is written as:

l(θ; x̃) = P (x̃; θ) =

∫
f(x; θ)ξx̃(x)dx (7)

Substituting the values of f(x; θ) and ξx̃(x) from Eqs. (1) and (6) the likelihood equation will
become as:

l(θ; x̃) =

n∏
i=1

∫
f(x; θ)ξx̃i(x)dx

=
n∏
i=1

∫ (
θ2

1 + θ

)(
1 + x

x3

)
e−

θ
x ξx̃i(x)dx (8)
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After taking the logarithm of the likelihood function, we get

L(θ; x̃) = logl(θ; x̃) = 2nlogθ − nlog(1 + θ) +
n∑
i=1

log

∫ (
1 + x

x3

)
e−

θ
x ξx̃i(x)dx (9)

Now, we will obtain the MLE of θ by maximizing the log-likelihood equation. Therefore,
we differentiate the above equation with respect to parameter θ and equate the derivative to
zero.

∂L(θ; x̃)

∂θ
=

2n

θ
− n

(1 + θ)
−

n∑
i=1

∫ (
1+x
x4

)
e−

θ
x ξx̃i(x)dx∫ (

1+x
x3

)
e−

θ
x ξx̃i(x)dx

= 0 (10)

Solving the above equation for θ, we obtain the estimated value of parameter θ. However, it is
visible that the above equation fails to return an explicit solution. An appropriate approach
for the parameter estimation of such equations may be to use iterative numerical methods.
We devise the Newton-Raphson algorithm to estimate the parameter using a suitable initial
guess.

2.2. Maximum product of spacings

The concept of the product of spacings is quite similar to that of maximum likelihood. To
obtain the likelihood equation, we write the joint density of the sample observations. Similarly,
we can obtain the product of spacings by taking the geometric mean of the spacings of
ordered sample observations. Let f(x) and F (x) be the PDF and CDF of the distribution
respectively and density f(x) is strictly positive in the interval (m,n) and zero everywhere
else i.e. m < x(1) < x(2) < · · · < x(n) < n. Here, we are assuming that the r.v. X is a
continuous variable and support of X is (0,∞) which makes m = 0 and n =∞. Accordingly,
boundary points of PDF and CDF will become as:

F (x) = 0 = f(x) ∀ x < m and F (x) = 1; f(x) = 0 ∀ x > n

Let xi:n denote the ith order statistics. Then the ith spacing Di is defined as follows:

Di = F (xi:n)− F (xi−1:n) ; i = 1, 2, . . . , (n+ 1)

The product of spacings (PS) is defined as the geometric mean ofDi’s i.e. G =
[∏n+1

i=1 Di

](1/n+1)

with initial conditions F (x0:n) = 0 and F (xn+1:n) = 1. It is important to note that each spac-
ing is nothing but the difference of CDF of ordered sample observations. Therefore, it is
always bounded and provides a solution. A problem that arises naturally in practical situa-
tions is the problem of tied observations i.e. equal magnitude of two or more data points. In
this situation, the product of spacings will necessarily reduce to zero, and we cannot obtain
the estimated value of the parameter. Several authors have discussed the problem of tied
observations and its remedies in detail such as; Shao, Hahn et al. (1999), Cheng and Stephens
(1989), Singh, Singh, and Singh (2014), Cheng and Traylor (1995).

Here, we have to obtain the value of CDF using vague or fuzzy observations. This vagueness
in the observed data is incorporated using fuzzy numbers by defining a triangular membership
function corresponding to each observation based on some prior knowledge of the nature of
imprecision.Therefore, CDF F (θ; x̃) corresponding to an observed fuzzy numbers x̃ = (a, b, c),
may be written as:

F (θ; x̃) = P (X ≤ a) +

∫
P (a ≤ X ≤ x)ξx̃i(x)dx

= F (a) +

∫
(F (x)− F (a))ξx̃i(x)dx (11)
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Now, substituting the value of F (x) and F (a) in Eq. (11) from Eq. (2) the above equation
can be written as:

F (θ; x̃) =

[
1 +

θ

(1 + θ)a

]
e−

θ
a +

∫ [(
1 +

θ

(1 + θ)x

)
e−

θ
x −

(
1 +

θ

(1 + θ)a

)
e−

θ
a

]
ξx̃i(x)dx

As we have already mentioned, the product of spacings is nothing but the geometric mean
of the spacings obtained by successive observations of an ordered sample from the given
distribution.

G(θ; x̃) =

[
n+1∏
i=1

Di

](1/n+1)

(12)

Now, that value of parameter θ which maximizes Eq. (12) will be the MPS estimator of
parameter θ. Therefore, taking logarithm on both sides of Eq. (12), we get the following
expression:

S(θ; x̃) = logG(θ; x̃) =
1

n+ 1

n+1∑
i=1

logDi

=
1

n+ 1

n+1∑
i=1

log [F (θ; x̃i)− F (θ; x̃i−1)] (13)

where,

F (θ; x̃i)− F (θ; x̃i−1) =

[
F (ai) +

∫
(F (xi)− F (ai))ξx̃i(x)dx

]
−
[
F (ai−1) +

∫
(F (xi−1)− F (ai−1))ξx̃i−1

(x)dx

]
Differentiating Eq.(13) with respect to parameter θ we get the following normal equation in
θ:

(14)

∂lnG(θ; x̃i)

∂θ
=

n+1∑
i=1

1

F (θ; x̃i)− F (θ; x̃i−1)

[{
ω(θ, ai) +

∫
{ω(θ, xi)− ω(θ, ai)} ξx̃i(x)dx

}
−
{
ω(θ, ai−1) +

∫
{ω(θ, xi−1)− ω(θ, ai−1)} ξx̃i−1

(x)dx

}]
where,

ω(θ, x) =
∂

∂θ

({
1 +

θ

(1 + θ)x

}
e−θ/x

)
= −e

−θ/x[θ2(x+ 1) + θ(2x+ 1)]

x2(1 + θ)2

By solving the above non-linear equation in θ, we get the MPS estimate of the population
parameter θ. Moreover, it is noticeable that no closed solution of the above equation exists.
Therefore, we will use numerical methods to get the solution.

2.3. Asymptotic confidence interval

We cannot obtain the exact interval estimates based on MLE and MPS estimators, i.e., θ̂ML

and θ̂MPS easily since the distribution of MLE and MPS is not available in explicit form. It
is worthwhile to mention that the MPS estimator also shows asymptotic properties like MLE
[see: Anatolyev and Kosenok (2005); Ghosh and Jammalamadaka (2001); Cheng and Amin
(1983)] i.e.

(θ̂MPS − θ)
D−→ N(0, I−1(θ))
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Therefore, we will use large sample theory to construct asymptotic confidence intervals for
population parameter θ using MLE and MPS estimators. As we know that the observed Fisher
information is the second-order partial derivative of the likelihood function, we can obtain the
same for MPS by simply replacing the likelihood function with the product spacings function.
We can write the approximate 100(1 − α)% asymptotic confidence interval for parameter θ
using MLE and MPS estimates as follows:

CIML =

[
θ̂ML ± zα/2

√
I−1(θ̂ML)

]
(15)

CIMPS =

[
θ̂MPS ± zα/2

√
I−1(θ̂MPS)

]
(16)

where the observed Fisher information I(θ̂ML) is defined as:

I(θ̂ML) = −
(
∂2L(θ; x̃)

∂θ2

)
θ=θ̂ML

∂2L(θ; x̃)

∂θ2
=
−2n

θ2
+

n

(1 + θ)2
+

n∑
i=1

∫ (1+xx5 ) e− θx ξx̃i(x)dx∫ (
1+x
x3

)
e−

θ
x ξx̃i(x)dx

−

(∫ (
1+x
x4

)
e−

θ
x ξx̃i(x)dx∫ (

1+x
x3

)
e−

θ
x ξx̃i(x)dx

)2


Similarly, we can obtain the observed Fisher information I(θ̂MPS) as follows:

I(θ̂MPS) = −
(
∂2S(θ; x̃)

∂θ2

)
θ=θ̂MPS

Let

N(θ, x) =

[{
ω(θ, ai) +

∫
{ω(θ, xi)− ω(θ, ai)} ξx̃i(x)dx

}
−
{
ω(θ, ai−1) +

∫
{ω(θ, xi−1)− ω(θ, ai−1)} ξx̃i−1

(x)dx

}]
Then, the second order partial derivative of the logarithm of product spacings function S is
given as:

∂2S(θ; x̃)

∂θ2
=

n+1∑
i=1

[
N ′(θ, x)

F (θ; x̃i)− F (θ; x̃i−1)
−
(

N(θ, x)

F (θ; x̃i)− F (θ; x̃i−1)

)2
]

where

N ′(θ, x) =
∂N(θ, x)

∂θ

=

[{
ω′(θ, ai) +

∫ {
ω′(θ, xi)− ω′(θ, ai)

}
ξx̃i(x)dx

}
−
{
ω′(θ, ai−1) +

∫ {
ω′(θ, xi−1)− ω′(θ, ai−1)

}
ξx̃i−1

(x)dx

}]
and

ω′(θ, x) =
∂ω(θ, x)

∂θ
=
e−θ/x[θ(x+ 1){θ(1 + θ)− 2x}+ (2x+ 1){θ(1 + θ)− x(1− θ)}]

x3(1 + θ)3

2.4. Estimation of reliability and hazard function

After developing the methodology of obtaining the MLE and MPS using fuzzy data, we
can easily obtain the estimated reliability and hazard function by simply substituting the
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estimated parameter value in their functional forms. It is important to note that we can
obtain the estimated reliability and hazard by directly replacing the population parameter
with an estimated one since both MLE and MPS possesses the invariance property. Cheng
and Amin (1983) and Coolen and Newby (1990) had mentioned that MPS also shows the
invariance property like MLE. Therefore, the estimated reliability and hazard can be written
as:

R(t; θ̂) = 1−

[
1 +

θ̂

(1 + θ̂)t

]
e−

θ̂
t (17)

H(t; θ̂) =
θ̂2(1 + t)

t2
[
t(1 + θ̂)

(
e
θ̂
t − 1

)
− θ̂
] (18)

where θ̂ is the estimate of parameter θ i.e. θ̂ML or θ̂MPS . On substituting the estimated values
of parameter θ̂ML and θ̂MPS in the above expressions it will provide estimated reliability and
hazard function at any time point t corresponding to that estimated value of θ.

3. Bayesian estimation

In this section, we discuss the Bayesian estimation of population parameter θ using fuzzy
data. From the Bayesian point of view, the parameter θ is a random variable. Hence we
need to specify a distribution to model its variation, known as the prior distribution of the
population parameter.We use the information contained in the sample observations in the
form of likelihood to update the existing prior information about unknown parameter θ using
the Bayes theorem. The primary reason behind choosing gamma prior is that the support
of the gamma random variable is the same as the support of parameter θ, i.e., (0,∞) and it
is quite flexible in nature. The probability density function of prior with hyperparameters p
and q is as follows:

π(θ) =
pq

Γ(q)
e−pθθ(q−1) ; θ > 0, q > 0, p > 0 (19)

Combining the prior given in Eq. (19) and the likelihood given in Eq. (8) one can easily
obtain the posterior distribution of the parameter θ for the given data.

π(θ|x̃) =
l(θ; x̃)π(θ)∫∞

0 l(θ; x̃)π(θ)dθ

=
J∫∞

0 Jdθ
(20)

where,

J = e−pθθ2n+q−1(1 + θ)−n
n∏
i=1

∫ (
1 + x

x3

)
e−

θ
x ξx̃i(x)dx

For estimation of the parameter under the Bayesian paradigm, we have employed quadratic
loss function, which is defined as follows:

lS(θ̂, θ) = ε(θ̂ − θ)2

where θ̂ is the estimated value of parameter θ and ε may be a function of parameter θ. If ε = 1,
we have SELF. It is the most common symmetric loss function. It treats overestimation and
underestimation of parameters equally. Also, it penalizes large errors much more as compared
to small errors. Suppose h(.) is a function of θ, then the Bayes estimate of h(.) under SELF
is equal to the expectation of the posterior distribution.

ĥ(θ) = Eπ[h(θ)]

=

∫∞
0 h(θ)Jdθ∫∞

0 Jdθ
(21)
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Here, we consider Bayes estimator of θ under SELF which is well known to be the poste-
rior mean. It is clearly visible that Eq.(21) is not mathematically facile and hence no closed
form for the estimator is available. Therefore, we will employ the MCMC method to gen-
erate samples from the non-facile posterior distribution using the Metropolis-Hastings (MH)
algorithm. The MH algorithm was proposed by Hastings (1970) and it is most general and
simplest MCMC algorithm (see; Roberts and Smith (1994), Chib and Greenberg (1995),
Robert (2004)). In this algorithm we generate sample values of parameter θ using a proposal
distribution with stationary distribution π(θ). The major steps of the algorithm are stated
below:

Step 1: Start with an initial guess value θ0 and set j = 1.

Step 2: Generate a new candidate parameter value θ∗ at the jth stage from proposal density
q(θ(j)|θ(j−1)).

Step 3: Accept candidate θ∗ as

θ(j) =

{
θ∗ with probability ρ(θ∗, θ(j−1))

θ(j−1) with probability 1− ρ(θ∗, θ(j−1))

where

ρ(θ∗, θ(j−1)) = min
{

π(θ∗|ũ)q(θ(j−1)|θ∗)
π(θ(j−1)|ũ)q(θ∗|θ(j−1))

, 1
}

Step 4: Calculate R(j)(t) = 1−
[
1 + θ(j)

(1+θ(j))x

]
e−

θ(j)

x and H(j)(t) = θ(j)
2
(1+x)

x2
[
x(1+θ(j))

(
e
θ(j)
x −1

)
−θ(j)

]
(see; Pak et al. (2014b))

Step 5: Repeat steps 2-4, M times and obtain θ(j), R(j)(t) and H(j)(t); j = 1, 2, . . . ,M

Bayes estimates of the parameter θ,R(t) and H(t) under SELF will be as follows:

θ̂B = Eπ(θ | ũ) =
1

M −M0

M∑
j=M0+1

θ(j)

R̂(t)B = Eπ(R(t) | ũ) =
1

M −M0

M∑
j=M0+1

R(j)(t)

Ĥ(t)B = Eπ(H(t) | ũ) =
1

M −M0

M∑
j=M0+1

H(j)(t)

where M0 is burn-in period. To construct the HPD credible intervals for θ, order the simulated
samples as θ(1) ≤ θ(2) ≤ . . . ≤ θ(M). Then construct all the 100(1− α)% credible intervals of
θ as (

θ[1], θ[M(1−α)+1]
)
, . . . ,

(
θ[Mα], θ[M ]

)
Here [X] denotes the largest integer less than or equal to X. Then the HPD credible interval
of θ is that credible interval which has the shortest length.

4. Simulation study

In the present section, we will analyze the behavior of estimators based on Monte-Carlo sim-
ulation studies. In a Monte-Carlo simulation study, we simulate artificial samples from the
desired distribution and try to observe the behavior of estimators based on these samples.In
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practical situations, only one sample is available, and based on this sample, we can estimate
parameter values, but we cannot investigate the behavior of the estimators. The samples
that are generated from the simulation can be considered as those that are obtained when
samples are collected more than once. Here we have chosen an arbitrary value of parameter
θ to generate samples from the ILD(θ). Generation of the random sample by the inverse
transformation method is not practicable in this case. However, in the case of breakdown
of inverse transformation method, we can utilize several other sample generation methods
as described by Ghitany et al. (2008), Jodrá (2010) and Sharma et al. (2015). We have to
fuzzify the generated samples to compute the estimated value of the population parameter
using the approach discussed in previous sections of this article. To accomplish this goal, we
have generated samples of different sizes n = (10, 15, 20, 25, 30) from the distribution under
consideration for a fixed value of parameter θ. These samples are utilized for estimation
of the population parameter, reliability function, and hazard rate. We have repeated this
process a sufficient number of times to calculate the estimated mean square errors (MSEs)
and compare the performance of estimators in terms of these estimated MSEs.We have also
obtained average estimates of 95% asymptotic confidence interval and corresponding cover-
age probabilities.In the Bayesian approach, we have used non-informative prior due to lack
of sufficient prior information. HPD intervals are reported along with their corresponding
coverage probabilities. After analyzing the effect of variation in the sample size, we have
investigated variation in values of population parameter θ for a fixed sample size n. We have
simulated the samples using the procedure mentioned above for θ = (0.5, 1, 2, 3), and then
the estimate of the parameter was calculated.Further, we have also obtained the MSEs of
estimated values of parameter, reliability, and hazard rate to assess the performance of esti-
mators under classical and Bayesian setup.In both situations stated above (i.e., for variation
of parameter and variation of sample size), we have considered non-informative priors and
SELF. Note that it is stated in the previous section that the prior distribution of population
parameter θ is gamma with hyperparameters p and q. As we know, for different values of
hyperparameters p and q, it is an informative prior.To compare the Bayes estimator with the
classical one, we should assume that we do not have any prior knowledge about the parameter
i.e., the prior distribution of population parameter θ is non-informative.To make the gamma
prior non-informative, we can put the value of hyperparameters p = q = 0, but it will make
the prior improper. Therefore, to preserve the attributes of proper prior, we have substituted
very small non-negative values (close to zero say, 0.0001) of hyperparameters p and q.We
have also considered the different values of hyperparameters p and q and reported the results
for informative prior.We have chosen the values of hyperparameters by equating the mean of
the gamma distribution with the actual value of parameter and variance with three different
choices of the amount of variabilities, i.e., (1, 10, 50). Therefore for every specific value of
parameter θ there are three priors which are denoted in rest of the paper as p1, p2 and p3.
The simple logic behind choosing the hyperparameters in the above-said manner is that the
experimenter can easily guess the expected value of parameters with some degree of belief,
and based on that, Singh (2011) proposed a method of choosing the hyperparameters. All the
results are summarized in table [1-6]. Table [1] provides the average estimated value and MSE
of parameter θ for different methods of estimation. It also provides the average length of the
confidence interval and corresponding coverage probabilities. Estimated values of reliability
and hazard function along with MSEs for a fixed point of time t = 1 are given in table [2].Both
the table [1] and [2] provides estimated parameters for a fixed value of θ = 1 and varying n.
Similarly, tables [3] and [4] provide the estimated values of the same set of parameters but for
a fixed n = 20 and varying values of the parameter θ.We can see that the MSE of parameter
θ and lengths of the asymptotic confidence interval and HPD intervals corresponding to all
the three estimators decreases with the increase in n.A similar pattern is visible in MSEs of
estimated values of R(t) and H(t). For a fixed value of n, an increase in the actual value of
the parameter increases the MSE of the parameter.Also, an increasing pattern is visible in
the length of confidence intervals with the increase in true θ. It is worthwhile to mention that
the MPS method is the best among all the three estimators in terms of the MSE of estimated
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parameter values. In the case of non-informative priors, the performance of Bayes and MLE
are more or less alike in terms of their MSEs. Table [5] and [6] provides the comparison of
Bayes estimators under SELF using informative priors. As quoted above, for every specific
value of parameter we have considered three priors p1, p2 and p3.Table [5] shows the effect of
variation of sample size n on the MSEs of estimated parameter, reliability, hazard, and the
average length of the confidence interval for fixed θ = 1. On the other hand, table [6] captures
the effect variation of parameter θ for fixed sample size n = 20. From both of the tables it is
clearly visible that the MSEs of θ,R(t) and H(t) is minimum for p1 and maximum for p3. It
is worthwhile to mention that, although the performance of MPS is better than the MLE and
Bayes estimator in the case of non-informative prior, Bayes estimator always provides better
results for an informative prior with suitable hyperparameters.

Table 1: Average estimates, the corresponding MSEs, length of confidence intervals and
coverage probabilities of the parameters θ for different sample size n and a fixed value of
parameter θ = 1

n
MLE MPS Bayes

θ MSE Length C.P. θ MSE Length C.P. θ MSE Length C.P.

10 1.0731 0.0851 1.0154 0.9500 0.9497 0.0637 0.8803 0.9460 1.0901 0.0981 0.9910 0.9480
15 1.0298 0.0427 0.7919 0.9540 0.9301 0.0364 0.6996 0.9560 1.0445 0.0464 0.7812 0.9500
20 1.0305 0.0330 0.6859 0.9480 0.9333 0.0307 0.6066 0.9490 1.0422 0.0352 0.6766 0.9470
25 1.0291 0.0250 0.6123 0.9560 0.9433 0.0224 0.5475 0.9550 1.0401 0.0271 0.6051 0.9530
30 1.0283 0.0212 0.5584 0.9640 0.9498 0.0187 0.5023 0.9630 1.0396 0.0234 0.5522 0.9470

Table 2: Average estimates and corresponding MSEs of the reliability and hazard function
using MLE and MPS respectively at specified time say (t = 1) for different sample size n and
fixed value of parameter θ = 1

n
MLE MPS Bayes

R(t) MSE H(t) MSE R(t) MSE H(t) MSE R(t) MSE H(t) MSE

10 0.4704 0.0131 0.7959 0.0130 0.4171 0.0122 0.8476 0.0114 0.4774 0.0131 0.7891 0.0132
15 0.4560 0.0078 0.8113 0.0073 0.4112 0.0080 0.8539 0.0070 0.4623 0.0083 0.8053 0.0078
20 0.4577 0.0062 0.8103 0.0057 0.4135 0.0068 0.8521 0.0059 0.4628 0.0064 0.8054 0.0060
25 0.4581 0.0047 0.8103 0.0043 0.4191 0.0049 0.8471 0.0043 0.4629 0.0050 0.8057 0.0047
30 0.4583 0.0040 0.8103 0.0037 0.4226 0.0041 0.8440 0.0036 0.4631 0.0044 0.8056 0.0040

Table 3: Average estimates, corresponding MSEs, length of confidence intervals and coverage
probabilities of the parameters θ for different values of the parameter θ and sample size n = 20

Theta
MLE MPS Bayes

θ MSE Length C.P. θ MSE Length C.P. θ MSE Length C.P.

0.5 0.5159 0.0078 0.3301 0.9490 0.4714 0.0068 0.2968 0.9500 0.5190 0.0081 0.3243 0.9430
1 1.0305 0.0330 0.6859 0.9480 0.9333 0.0307 0.6066 0.9470 1.0422 0.0352 0.6766 0.9470
2 2.0551 0.1370 1.4515 0.9600 1.8663 0.1220 1.2874 0.9610 2.0795 0.1395 1.4293 0.9600
3 3.1051 0.3570 2.2829 0.9530 2.7880 0.3247 2.0116 0.9520 3.0548 0.2576 2.1627 0.9630
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Table 4: Average estimates and corresponding MSEs of the reliability and hazard function
using MLE and MPS respectively at specified time say (t = 1) for different values of parameter
θ and sample size n = 20

θ
MLE MPS Bayes

R(t) MSE H(t) MSE R(t) MSE H(t) MSE R(t) MSE H(t) MSE

0.5 0.2000 0.0022 1.0494 0.0020 0.1763 0.0019 1.0721 0.0018 0.2017 0.0023 1.0478 0.0020
1 0.4577 0.0062 0.8103 0.0057 0.4135 0.0068 0.8521 0.0059 0.4628 0.0064 0.8054 0.0060
2 0.7745 0.0049 0.4594 0.0093 0.7345 0.0069 0.5121 0.0108 0.7795 0.0048 0.4526 0.0092
3 0.9097 0.0020 0.2435 0.0075 0.8807 0.0038 0.2967 0.0112 0.9079 0.0018 0.2481 0.0064

Table 5: Average Bayes estimates of θ, reliability and hazard along with corresponding MSEs,
average length of 95% HPD intervals and coverage probabilities of θ based on simulated data
for informative prior with n = (10, 15, 20, 25) and fixed parameter θ = 1

Prior n θ MSE Length C.P. R(t) MSE H(t) MSE

p1 10 1.0791 0.0777 0.9640 0.9470 0.4740 0.0122 0.7928 0.0121
(p=1,q=1) 15 1.0538 0.0500 0.7881 0.9560 0.4661 0.0084 0.8015 0.0081

20 1.0441 0.0343 0.6698 0.9550 0.4637 0.0062 0.8045 0.0058
25 1.0373 0.0287 0.6031 0.9430 0.4614 0.0053 0.8070 0.0049

p2 10 1.0800 0.0964 0.9882 0.9440 0.4720 0.0142 0.7938 0.0144
(p=0.1,q=0.1) 15 1.0612 0.0523 0.7951 0.9450 0.4691 0.0088 0.7986 0.0085

20 1.0483 0.0381 0.6802 0.9430 0.4651 0.0068 0.8030 0.0064
25 1.0340 0.0290 0.6024 0.9470 0.4598 0.0055 0.8085 0.0050

p3 10 1.0886 0.0981 0.9947 0.9290 0.4757 0.0145 0.7903 0.0147
(p=0.02,q=0.02) 15 1.0671 0.0535 0.7896 0.9520 0.4717 0.0091 0.7961 0.0087

20 1.0411 0.0383 0.6767 0.9380 0.4618 0.0069 0.8061 0.0065
25 1.0413 0.0313 0.6008 0.9440 0.4629 0.0056 0.8055 0.0053

Table 6: Average Bayes estimates of θ, reliability and hazard along with corresponding MSEs,
average length of 95% HPD intervals and coverage probabilities of θ based on simulated data
for informative prior with θ = (0.5, 1, 2) and fixed n = 20

θ Prior θ MSE Length C.P. R(t) MSE H(t) MSE

0.5 p1: (p=0.25,q=0.5) 0.5204 0.0084 0.3244 0.9420 0.2024 0.0024 1.0471 0.0021
p2: (p=0.025,q=0.05) 0.5202 0.0079 0.3251 0.9560 0.2023 0.0023 1.0472 0.0020
p3: (p=0.005,q=0.01) 0.5154 0.0077 0.3216 0.9450 0.1997 0.0022 1.0496 0.0020

1 p1: (p=1,q=1) 1.0441 0.0343 0.6698 0.9550 0.4637 0.0062 0.8045 0.0058
p2: (p=0.1,q=0.1) 1.0483 0.0381 0.6802 0.9430 0.4651 0.0068 0.8030 0.0064
p3: (p=0.02,q=0.02) 1.0411 0.0383 0.6767 0.9380 0.4618 0.0069 0.8061 0.0065

2 p1: (p=4,q=2) 2.0980 0.1326 1.3660 0.9540 0.7841 0.0044 0.4469 0.0086
p2 : (p=0.4,q=0.2) 2.1303 0.1789 1.4638 0.9540 0.7877 0.0053 0.4406 0.0107
p3: (p=0.08,q=0.04) 2.1186 0.1936 1.4651 0.9370 0.7840 0.0058 0.4448 0.0117
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5. Real data analysis

In this section, we will check the performance of developed estimators by analyzing a real
data set. This set consists of survival times in days of 72 guinea pigs after they were infected
with different doses of virulent tubercle bacilli in a medical experiment. This data set was
initially reported by Bjerkedal et al. (1960) and was formerly used by several authors in dif-
ferent contexts. Here, we are primarily concerned with the animals in the same cage that
were under the same regimen. The regimen number is the common logarithm of the number
of bacillary units in 0.5 ml of challenge solution. Corresponding to regimen 6.6, there were
72 observations listed below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58,
59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91,
95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263,
297, 341, 341, 376.

Recently, Basu, Singh, and Singh (2017) checked the suitability of inverse Lindley distri-
bution to represent this data set. As mentioned earlier, the survival times of infected pigs,
which is nothing but a continuous variate, cannot be reported precisely. Therefore, each re-
ported observation is fuzzy and represented with the help of its corresponding membership
function. The functional form of the membership function corresponding to each realization
of x is as follows:

ξx̃i(x) =


x−(xi−hi)

hi
; xi − hi ≤ x ≤ xi

(xi+hi)−x
hi

; xi ≤ x ≤ xi + hi

0 ; otherwise

where hi = 0.05xi. The data so obtained is then employed to obtain the MLE and MPS
estimates of population parameters. The MLE and MPS estimate calculated from the data
set are θ̂ML = 0.1137, θ̂MPS = 0.1042 and corresponding 95% asymptotic confidence intervals
are obtained as (0.0928, 0.1347) and (0.0860, 0.1223). To obtain the estimators in Bayesian
setup we have considered non-informative priors due to lack of any other prior knowledge
except the observed data as suggested by Berger (2013). We have considered three different

initial values of chain as θ̂, θ̂ −
√
V (θ̂) and θ̂ +

√
V (θ̂) to run three separate MCMC chains.

Figure (2) shows the trace plot and density plot of all the three chains and it reveals that the
simulated samples of MCMC are well mixed and the nature of posterior is positively skewed
since most of the density is concentrated in a small area. Utilizing these MCMC samples, we
computed Bayes estimate as θ̂Bayes = 0.1136 under SELF using non-informative prior. The
95% HPD interval estimates for θ is obtained as (0.0928, 0.1354).
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Figure 2: Iteration and density plot of MCMC samples for guinea pigs data
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6. Conclusion

In this article, our main concern was to develop the MPS estimator for the non precise
observed data. For this purpose, we have considered inverse Lindley distribution which is a
very useful survival model. To compare the performance of MPS with the other estimators,
we have also obtained the MLE and Bayes estimator of the population parameter. In addition
to the point estimate of the parameter, estimated reliability, hazard, and confidence interval is
also obtained in both the classical and the Bayesian approaches. Estimation under Bayesian
setup is performed using both informative and non-informative gamma priors using SELF.
We have noted that the MPS estimator performs better than the MLE and non-informative
Bayes estimator in terms of MSE. Further, we have seen that although the Bayes estimator
with the non-informative gamma prior is similar to MLE, for informative prior, it is superior
to MLE and MPS estimator in terms of inherent variability and length of the confidence
interval.

The present article presents a combination of statistical methods and fuzzy approach. The
methodology developed in this paper will be helpful to researchers and statistician who en-
counters fuzzy data during the experiments. Expansion of MPS estimator under Bayesian
setup for fuzzy data will be extremely fruitful research. Also dealing the problems of fuzzy
data via fuzzy models would help us to further explore this idea and will increase our level of
understanding in both statistical and fuzzy approaches.
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