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Abstract

In this paper, we consider a survival model of a series system with random sample size,
Z. Such a situation arises in competing risk analysis where the number of causes of failure
is random and only the minimum of the survival times due to various causes is observed.
Considering the distribution of Z as generalized Sibuya and the baseline distribution as
Weibull, a Weibull-generalized Sibuya distribution is derived. The structural properties
of the proposed model are studied along with the maximum likelihood estimation of the
parameters. Extensive simulation studies are carried out to study the performance of
the estimators. For illustration, two real data sets are analyzed and it is shown that the
proposed model fits better than some of the existing models.

Keywords: generalized Sibuya distribution, Weibull-Bessel distribution, Weibull-generalized
Poisson distribution, maximum likelihood estimation, Rao’s score test.

1. Introduction

In survival analysis , many times the complete survival times T1, T2, ..., TZ are not available.
However, X = min(T1, T2, ..., TZ) or Y = max(T1, T2, ...TZ) is observed. The first situation
arises in competing risk theory where T1, T2, ..., TZ are the survival times due to different
causes of failure and only X is observed along with the cause of failure. The second situation
arises in the industrial set up where T1, T2, ..., TZ are the number of defects in a product and
only Y is observed. In both the situations, the number of observations is unknown and so Z
is considered as a random variable.

In this paper, we consider a random sample where only X is observed and Z is considered as
random. More specifically, let T1, T2, ..., TZ be a random sample of size Z with the survival
function (s.f.) S0(t). Then the conditional survival function of X given Z = z is given by

S(x|Z = z) = [S0(x)]z . (1)
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The unconditional survival function of X is given by

S(x) =
∞∑
z=1

[S0(x)]z P(Z = z)

= GZ(S0(x)), (2)

where GZ(s) =
∑∞

z=1 s
z P(Z = z), 0 < s < 1, is the probability generating function (p.g.f.)

of Z.

The model above can be interpreted as a proportional hazard model whose hazard rate is
given by

λ(x|Z) = Z λ0(x),

where λ0(x) = − d
dx lnS0(x) is the baseline hazard rate function and Z is the proportionality

factor, whence in this case is random and has a discrete distribution. This is analogous to
the proportional hazard continuous frailty model, see Gupta and Gupta (2009).

Let f(x|z), S(x|z), λ(x|z) be the conditional p.d.f, s.f and h.r.f. of X given Z = z. The
unconditional p.d.f, s.f and h.r.f. of X, respectively, are given by f(x), S(x), λ(x). It follows
that

λ(x)

λ0(x)
=

f(x)

S(x) λ0(x)

=
1

S(x) λ0(x)

∞∑
z=1

f(x|z) P(Z = z)

=
1

S(x) λ0(x)

∞∑
z=1

λ(x|z) S(x|z) P(Z = z)

=
S0(x)

S(x)

∞∑
z=1

z [S0(x)]z−1 P(Z = z)

= S0(x)
G′Z(S0(x))

GZ(S0(x))
,

where G′Z(s) = d
dsGZ(s).

For some theoretical properties of the above model, in the continuous case, the reader is
referred to Gupta and Gupta (2009) and the references therein. For the proposed model, the
expression for the hazard rate will be derived in Section3.

Various distributions of T and Z have been considered in the literature. For example, Morais
and Barreto-Souza (2011), Gupta and Huang (2014)and Gupta and Waleed (2018) have con-
sidered the baseline distribution as Weibull and the distribution of Z as power series, gen-
eralized Poisson, Conway-Maxwell Poisson and Bessel, respectively. In addition, Cooner,
Banerjee, Carlin, and Sinha (2007), Chen, Ibrahim, and Sinha (1999), Kus (2007) and Karlis
(2009) have considered the baseline distribution as exponential and the distribution of Z
as Poisson. Cordeiro, Rodrigues, and de Castro (2012) and Rodrigues, de Castro, Cancho,
and Balakrishnan (2009) studied the resulting model with Conway-Maxwell Poisson as the
distribution of Z.

In the present paper, we propose a model with baseline distribution as Weibull and the distri-
bution of Z as generalized Sibuya giving rise to a four parameter model which has decreasing,
increasing, bathtub and upside-down bathtub failure rate. The maximum likelihood estima-
tion of the parameters is studied and Rao’s score test is developed for various parameters.
Examples are presented to illustrate the validity of the proposed model. The fitting of the
proposed model, for these examples, has been compared with several of the existing models.
Simulation studies have been carried out to examine the performance of the estimators.

The contents of this paper are organized as follows. In Section 2, a brief background of the
generalized Sibuya distribution and its properties are given. Section 3 contains the devel-
opment of the Weibull-generalized Sibuya and its structural properties. The estimation of
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the parameters along with the score tests for various parameters is presented in Section 4.
Simulation studies are carried out in Section 5 to examine the performance of the estimators.
Some applications are presented in Section 6. Finally, some conclusions and comments are
provided in Section 7.

2. Generalized Sibuya distribution

A discrete random variable Z is said to have a generalized Sibuya distribution with parameters
α and ν, denoted by GS(α, ν), if its probability mass function (p.m.f.) is given by

pZ(z) = P(Z = z) =
α

ν + z

z−1∏
i=1

(
1− α

ν + i

)
=

α

ν + z

(ν + 1− α)z−1
(ν + 1)z−1

, z = 1, 2, . . . , (3)

where ν ≥ 0, 0 < α < ν + 1, and

(a)0 = 1, (a)k = a(a+ 1)(a+ 2) . . . (a+ k − 1), k = 1, 2, . . . ,

is the (rising) Pochhammer symbol. Note that (a)k = Γ(a+ k)/Γ(a), for a > 0, where Γ(·)
is the gamma function. The special case ν = 0 and 0 < α < 1 implies the Sibuya (1979)
distribution with p.m.f.

pZ(z) = P(Z = z) = α
(1− α)z−1

z!
, z = 1, 2, . . . , , 0 < α < 1.

Figure 1 shows the p.m.f. of GS(α, ν) for selected values of α and ν.
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Figure 1: The p.m.f. of GS(α, ν) distribution
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For ν ≥ 0, 0 < α < ν + 1, the survival function (s.f.) and hazard rate function (h.r.f.),
respectively, are given by

SZ(z) = P(Z > z) =
(ν + 1− α)z

(ν + 1)z
, z = 1, 2, . . . , (4)

hZ(z) = P(Z = z|Z ≥ z) =
α

ν + z
, z = 1, 2, . . . . (5)

For ν > 0, 1 < α < ν + 1, the mean residual life function (m.r.l.f.) is given by

µZ(z) = E(Z − z|Z ≥ z) =
ν + z − 1

α− 1
− 1, z = 1, 2, . . . . (6)

The GS distribution has the following important properties:

(i) p(z) is decreasing in z and hence GS distribution has mode at 1.

(ii) p(z) is log-convex and hence GS distribution has decreasing hazard rate (DHR) hZ(z) and
hence increasing mean residual life (IMRL) µZ(z). Also, log-convexity implies that GS
distribution is infinitely divisible, see Hansen (1988). Kozubowski and Podgorski (2018)
showed infinite divisibility via the representation as mixture of geometric distribution.

The mean and variance of the GS distribution, respectively, are given by

µZ =
ν

α− 1
, ν > 0, 1 < α < ν + 1,

σ2Z =
αν(ν + 1− α)

(α− 1)2 (α− 2)
, ν > 1, 2 < α < ν + 1.

Note that Sibuya distribution, i.e. ν = 0 and 0 < α < 1, does not have mean and variance.

The index of dispersion of the GS distribution is given by

γZ =
σ2Z
µZ

=
α(ν + 1− α)

(α− 1)(α− 2)
, ν > 1, 2 < α < ν + 1.

The GS distribution is over-dispersed, i.e. γZ > 1, (under-dispersed, i.e. γZ < 1,) if 2 < α <

ν1 (ν1 < α < ν + 1), where ν1 =
ν+4+

√
ν(ν+8)

4 > 2.

For details about the above properties of GS model, see Kozubowski and Podgorski (2018).

The p.g.f. of GS distribution is given by

GZ(s) = E(sZ) (7)

=

∞∑
z=1

sz
α

ν + z

(ν + 1− α)z−1
(ν + 1)z−1

=
∞∑
k=0

sk+1 α

ν + k + 1

(ν + 1− α)k
(ν + 1)k

=
α

ν + 1
s
∞∑
k=0

(1)k (ν + 1− α)k
(ν + 2)k

sk

k!

=
α

ν + 1
s 2F1(1, ν + 1− α; ν + 2; s), 0 < s < 1, (8)

where

2F1(a, b; c; s) =

∞∑
k=0

(a)k (b)k
(c)k

sk

k!
, |s| < 1, c 6= 0,−1,−2, . . . ,
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is the Gauss hypergeometric function. Note that our expression of the p.g.f. (8) is different
than the one given by Kozubowski and Podgorski (2018).

Note that the Gauss hypergeometric function has the integral representation:

2F1(a, b; c; s) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− st)−a dt, c > b > 0.

For ν = 0 and 0 < α < 1, i.e. Sibuya distribution, we have

GZ(s) = α s 2F1(1, 1− α; 2; s)

= α s 2F1(1− α, 1; 2; s)

= α s

∫ 1

0
(1− st)−(1−α) dt

= α

∫ 1

1−s
yα−1 dy

= 1− (1− s)α, 0 < s < 1, 0 < α < 1.

3. Weibull-generalized Sibuya distribution

Suppose that T1, T2, . . . , TZ are independent and identically distributed random variables
having the Weibull distribution with s.f.

S0(t) = e−(βt)
γ
, t > 0, β, γ > 0, (9)

and Z is a discrete random variable having GS(α, ν) distribution with p.g.f. (8).

Consider X = min(T1, T2, . . . , TZ) and assume that the random variables Ti, i = 1, 2, ..., Z,
and Z are independent. It follows that the survival function of X is

S(x;θ) = GZ (ST (x)) =
α

ν + 1
e−(βx)

γ

2F1(1, ν + 1− α; ν + 2; e−(βx)
γ
), x > 0, (10)

where θ = (β, γ, α, ν) and β, γ > 0 and 0 < α < ν+1, ν ≥ 0. See the R function pweibullGS1 in
Appendix B for calculating the cumulative distribution function (c.d.f.) F (x;θ) = 1−S(x;θ).
Also, in Appendix B, the R function qweibullGS1 can be used for calculating the quantile
function F−1(p;θ) where 0 < p < 1.

The continuous distribution with s.f. (10) will be called Weibull-generalized Sibuya distribu-
tion and will be denoted by WGS(θ).

Special submodels:

(i) γ = 1: Exponential-GS (EGS)distribution,

(ii) ν = 0: Weibull-Sibuya (WS) distribution,

(iii) γ = 1, ν = 0: Exponential-Sibuya (ES) distribution.

Since
d

dx
2F1(a, b; c;w(x)) =

ab

c
2F1(a+ 1, b+ 1; c+ 1;w(x))

dw(x)

dx
,

(see Andrews (1998), p. 362), it follows that the probability density function (p.d.f.) of WGS
distribution is

f(x;θ) = − d

dx
S(x;θ)

=
α

ν + 1
βγ(βx)γ−1 e−(βx)

γ { 2F1(1, ν + 1− α; ν + 2; e−(βx)
γ
)

+
ν + 1− α
ν + 2

e−(βx)
γ

2F1(2, ν + 2− α; ν + 3; e−(βx)
γ
)}.
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Now, since

a 2F1(a, b; c; s) +
ab

c
s 2F1(a+ 1, b+ 1; c+ 1; s) = 2F1(a+ 1, b; c; s),

(see Andrews (1998), p. 363), we have

f(x;θ) =
α

ν + 1
βγ(βx)γ−1 e−(βx)

γ

2F1(2, ν + 1− α; ν + 2; e−(βx)
γ
). (11)

See the R function dweibullGS1 in Appendix B for calculating the p.d.f. (11).

For ν = 0 and 0 < α < 1, i.e. Sibuya distribution, we have 2F1(2, 1 − α; 2; s) = (1 − s)α−1
and hence

f(x;θ) = αβγ(βx)γ−1 e−(βx)
γ
[
1− e−(βx)γ

]α−1
, x > 0, β, γ > 0, 0 < α < 1.

The last expression is the p.d.f. of the exponentiated Weibull distribution with resilience
parameter α ∈ (0, 1), see Mudholkar and Srivastava (1993) and (Mudholkar, Srivastava, and
Freimer 1995).

Figure 1 shows the p.d.f. (11) of the WGS distribution for selected values of the parameters.
This figure shows that such p.d.f. is strictly decreasing for 0 < γ ≤ 1, and is unimodal for
γ > 1.
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Figure 2: The p.d.f. of WGS distribution for selected values of the parameters

The h.r.f. of WGS distribution is

h(x;θ) =
f(x;θ)

S(x;θ)

= βγ(βx)γ−1
2F1(2, ν + 1− α; ν + 2; e−(βx)

γ
)

2F1(1, ν + 1− α; ν + 2; e−(βx)γ )
. (12)
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Note that the expression (12) is a weighted function of h0(x) = βγ(βx)γ−1, the h.r.f. of
Weibull distribution.
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Figure 3: The h.r.f. of WGS distribution for selected values of the parameters

Figure (3) shows the h.r.f. (12) of the WGS distribution for selected values of the parameters.

The kth moment of the WGS distribution is given by

µ′k = E(Xk) =
Γ(1 + k/γ)

βk
E(Z−k/γ) =

Γ(1 + k/γ)

βk

∞∑
z=1

z−k/γ pZ(z). (13)

The above moments can be computed numerically using computer software language such as
Mathematica, R, MATLAB, etc.

It can be verified that the mean and variance of the WGS distribution are, respectively, given
by the following expressions

E(X) =
Γ(1 + 1/γ)

β
E(Z−1/γ),

Var(X) =
Γ(1 + 2/γ)

β2
E(Z−2/γ)−

[
Γ(1 + 1/γ)

β
E(Z−1/γ)

]2
.
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Table 1: Mean and variance of WGS for selected values of the parameters

β γ α ν E(X) V ar(X)

0.5 0.5 0.3 0 1.354 27.689
1 0.816 2.043
5 1.259 0.393
10 1.507 0.248

0.5 0.5 1 2 1.580 30.660
1 1.000 2.159
5 1.486 0.228
10 1.700 0.083

1 0.5 0.3 0 0.677 6.922
1 0.408 0.511
5 0.630 0.098
10 0.754 0.062

1 0.5 1 2 0.790 7.665
1 0.500 0.540
5 0.743 0.057
10 0.850 0.021

2 0.5 0.3 0 0.339 1.731
1 0.204 0.128
5 0.315 0.025
10 0.377 0.015

2 0.5 1 2 0.394 1.916
1 0.250 0.135
5 0.371 0.014
10 0.425 0.005

4. Maximum likelihood estimation

Let x1, x2, . . . , xn be a random sample of size n from WGS(β, γ, α, ν) distribution. The
log-likelihood function is given by

`n(θ) =

n∑
i=1

ln f(xi;θ)

= n[ln(α) + γ ln(β) + ln(γ)− ln(ν + 1)] + (γ − 1)

n∑
i=1

ln(xi)−
n∑
i=1

(βxi)
γ

+

n∑
i=1

ln[ 2F1(2, ν + 1− α; ν + 2; e−(βxi)
γ
)]. (14)

The score vector

Un(θ) = (U1(θ), U2(θ), U3(θ), U4(θ))> =

(
∂`n(θ)

∂β
,
∂`n(θ)

∂γ
,
∂`n(θ)

∂α
,
∂`n(θ)

∂ν

)>
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has elements

U1(θ) =
nγ

β
− γβγ−1

n∑
i=1

xγi +
n∑
i=1

D1(xi,θ)

2F1(2, ν + 1− α; ν + 2; e−(βxi)γ )
, (15)

U2(θ) = n

(
ln(β) +

1

γ

)
+

n∑
i=1

ln(xi)−
n∑
i=1

(βxi)
γ ln(βxi)

+
n∑
i=1

D2(xi,θ)

2F1(2, ν + 1− α; ν + 2; e−(βxi)γ )
, (16)

U3(θ) =
n

α
+

n∑
i=1

D3(xi,θ)

2F1(2, ν + 1− α; ν + 2; e−(βxi)γ )
, (17)

U4(θ) = − n

ν + 1
+

n∑
i=1

D4(xi,θ)

2F1(2, ν + 1− α; ν + 2; e−(βxi)γ )
, (18)

where

D1(xi,θ) = − 2(ν + 1− α)γ

(ν + 2)β
2F1(3, ν + 2− α; ν + 3; e−(βxi)

γ
) (βxi)

γ e−(βxi)
γ
, (19)

D2(xi,θ) =
β

γ
ln(βxi) D1(xi,θ), (20)

D3(xi,θ) = 2F1(2, ν + 1− α; ν + 2; s) ψ0(ν + 1− α)

−
∞∑
k=0

(2)k (ν + 1− α)k
(ν + 2)k

ψ0(ν + k + 1− α)
sk

k!
, (21)

D4(xi,θ) = 2F1(2, ν + 1− α; ν + 2; s) ψ0(ν + 2)

−
∞∑
k=0

(2)k (ν + 1− α)k
(ν + 2)k

ψ0(ν + 2 + k)
sk

k!
−D3(xi,θ), (22)

with ψ0(z) = d
dz ln Γ(z) as the polygamma function of order 0, see Appendix A for details.

The MLE θ̂ of θ can be obtained by solving the system of equations Un(θ) = 0 numerically.

For interval estimation and tests of hypotheses on θ, we require the observed information
matrix of a random sample of size n from the WGS distribution, given by

Jn(θ) = −


∂2`n(θ)
∂β2

∂2`n(θ)
∂β∂γ

∂2`n(θ)
∂β∂α

∂2`n(θ)
∂β∂ν

∂2`n(θ)
∂β∂γ

∂2`n(θ)
∂γ2

∂2`n(θ)
∂γ∂α

∂2`n(θ)
∂γ∂ν

∂2`n(θ)
∂β∂α

∂2`n(θ)
∂γ∂α

∂2`n(θ)
∂α2

∂2`n(θ)
∂α∂ν

∂2`n(θ)
∂β∂ν

∂2`n(θ)
∂γ∂ν

∂2`n(θ)
∂α∂ν

∂2`n(θ)
∂ν2

 .

Under mild regularity conditions (see Lehmann and Casella (1998), pp. 461-463), the asymp-
totic distribution of the MLE θ̂ is multivariate normal distribution with mean θ and variance-
covariance matrix Jn(θ).

This estimated multivariate normal distribution can be used to construct approximate confi-
dence intervals for the parameters and to test hypotheses about these parameters.

It is of interest to test whether the baseline distribution is exponential versus Weibull. That
is, for our proposed model, we need to test H0 : γ = 1 versus H1 : γ 6= 1. For this
purpose, we use the Rao’s score and the likelihood ratio tests.
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The Rao’s score test statistic is given by

R = U>n (θ̃1) I−1n (θ̃1) Un(θ̃1),

where Un(θ) is the score vector, In(θ) is the expected information matrix and θ̃1 is the
restricted MLE under H0 : γ = 1.

For large n, the expected information matrix matrix In(θ) is approximated by J(θ).

The likelihood ratio test statistic is

Λ = −2[`n(θ̃1)− `n(θ̂)].

Each of the above test statistics has a chi-square distribution with one degree of freedom.

For more details about the Rao score and likelihood ratio tests and their asymptotic distri-
bution, see Rao (2001).

5. Simulation study

To generate a variate x from the WGS(β, γ, α, ν) distribution, we (i) simulate a value z of
the random variable Z ∼ GS(α, ν), (ii) simulate z values t1, . . ., tz from the random variable
T ∼ Weibull(β, γ) and (iii) take x = min(t1, . . ., tz). See the R function rweibullGS1 in
Appendix B for generating random data from WGS distribution.

In this section, we present the results of the simulation studies which were carried out to
examine the performance of the MLEs of the WGS distribution. To suffice our purpose, we
generated 10000 samples of size 50, 100, 150, 200, 250 and 300 considering the following four
scenarios.

Table 2: Scenarios of the true values of the parameters used in the simulations

β γ α ν

Scenario 1 case 1 0.5 0.5 0.3 0
case 2 0.5 1 0.3 0
case 3 0.5 5 0.3 0
case 4 0.5 10 0.3 0

Scenario 2 case 1 1 0.5 0.3 0
case 2 1 1 0.3 0
case 3 1 5 0.3 0
case 4 1 10 0.3 0

Scenario 3 case 1 0.5 0.5 1 2
case 2 0.5 1 1 2
case 3 0.5 5 1 2
case 4 0.5 10 1 2

Scenario 4 case 1 1 0.5 1 2
case 2 1 1 1 2
case 3 1 5 1 2
case 4 1 10 1 2

All simulations were performed in Ox Console, version 8.02 (Doornik 2007).

Figure 4 shows the average bias of the MLEs which are seen to be quite small. This figure
also shows that the bias of β̂, γ̂, α̂ may be positive or negative, while the bias of ν̂ is positive.
Figure 5 shows the MSEs of the estimates which decrease as the sample size increases.
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Figure 4: Estimated bias of the MLEs under the considered four scenarios
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Figure 5: Estimated MSE of the MLEs under the considered four scenarios
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6. Applications

We compare our proposed Weibull-generalized sibuya (WGS) model with other four-parameter
models, namely, Weibull-Bessel (WB), see (Gupta and Waleed 2018), and Weibull-generalized
Poisson (WGP), see (Gupta and Huang 2014). We also consider the three-parameter versions
when γ = 1, when the base distribution is exponential.

The p.d.f. of the WB model is given by

fWB(x;ψ) =
γβγω1/2 Γ(τ + 1)

Γ(τ + 1)Iν(2
√
ω)− ων/2

xγ−1 Iτ+1

(
2
√
e−(βx)γω

)
√
e(1−τ)(βx)γ

, x > 0,

where ψ = (β, γ, ω, τ), β, γ, ω > 0, τ > −1, and

Iτ (a) =
∞∑
k=0

1

k! Γ(k + τ + 1)
(a/2)2k+τ , a > 0, τ > −1,

is the modified Bessel function of the first kind.

The p.d.f. of the WGP model is given by

fWGP (x;φ) =
λγβγxγ−1e

−λ
ρ
W (g)−λ

(−W (g))

ρ(1− e−λ)(1 +W (g))
, x > 0,

where φ = (β, γ, λ, ρ), β, γ, λ > 0, |ρ| < 1, andW (g) is the Lambert function, i.e. W (g)eW (g) =
g and g = −ρe−α−(βx)γ .

For model selection, we use Akaiake information criterion (AIC) and Bayesian information
criterion (BIC) where AIC = 2k − 2 ̂̀n and BIC = 2 log(n) − 2 ̂̀n where k is the number of
parameters in the model and ̂̀

n is the estimated log-likelihood function of this model.

Data set 1 This data set represents the number of successive failures for the air conditioning
system of each member in a fleet of 7 Boeing 720 airplanes. The data consisting of 125
observations pertain to aircraft numbers 7910, 7911, 7912, 7913, 7914, 7915, 7916, see Gupta
and Waleed (2018).

74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326, 55, 320, 56, 104, 220, 239, 47,
246, 176, 182, 33, 15, 104, 35, 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12,
120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95, 97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1,
16, 106, 206, 82, 54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24, 50, 44, 102, 72, 22, 39, 3,
15, 197, 188, 79, 88, 46, 5, 5, 36, 22, 139, 210, 97, 30, 23, 13, 14, 359, 9, 12, 270, 603, 3, 104,
2, 438, 50, 254, 5, 283, 35, 12

Table 3 shows the MLEs of the parameters of the various competing models, their estimated
log-likelihood, AIC and BIC. This table also shows that the EGS model has the smallest AIC
and BIC. This selection of EGS model is also consistent with Rao’s and likelihood ratio tests
presented in Table 4. In addition, several goodness-of-fit plots for the EGS model for data
set 1 presented in Figure 6 support this selection.
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Table 3: MLEs, estimated log-likelihood, AIC, and BIC for data set 1 (n=125)

Model MLE log-likelihood AIC BIC

WGS θ̂ = (β̂, γ̂, α̂, ν̂) -686.29 1380.6 1391.9
= (0.0056, 1.2516, 1.0368, 2.0028)

EGS θ̃1 = (β̃1, α̃1, ν̃1) -686.33 1378.7 1387.2
= (0.0071, 11.7252, 25.0701)

WB ψ̂ = (β̂, γ̂, ω̂, τ̂) - 686.60 1381.2 1392.4
= (0.0122, 0.8249, 0.0099, 7.5434)

EB ψ̃1 = (β̃1, ω̃1, τ̃1) -687.70 1381.4 1389.7
= (0.0023, 31.8331,−0.6675)

WGP φ̂ = (β̂, γ̂, λ̂, ρ̂) -1064.70 2140.8 2149.3
= (0.0046, 1.5395, 1.5490, 0.8440)

EGP φ̃1 = (β̃1, λ̃1, ρ̃1) -1067.40 2139.0 2144.7
= (0.0094, 2.3689,−0.9083)

Table 4: Likelihood ratio and Rao’s score tests for H0 : γ = 1 (EGS) for data set 1

Test Statistic p-value Decision

Rao’s score 0.818 0.366 Accept H0

LR 166.180 0.077 Accept H0
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Figure 6: Goodness-of-fit plots for EGS model for data set 1



Austrian Journal of Statistics 135

Data set 2 This data set represents the failure stresses (in GPa) of 65 single carbon fibers
of length 50 mm (see Bader and Priest (1982)).

1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807, 1.812, 1.840, 1.852, 1.852,
1.862, 1.864, 1.931, 1.952, 1.974, 2.019, 2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172,
2.180, 2.194, 2.211, 2.270, 2.272, 2.280, 2.299, 2.308, 2.335, 2.349, 2.356, 2.386, 2.390, 2.410,
2.430, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593, 2.601, 2.604, 2.620, 2.633, 2.670,
2.682, 2.699, 2.705, 2.735, 2.785, 3.020, 3.042, 3.116, 3.174

Table 5 shows the MLEs of the parameters of the various competing models, their estimated
log-likelihood, AIC and BIC. This table also shows that the WGS model has the smallest
AIC and BIC. This selection of WGS model is also consistent with Rao’s score and likelihood
ratio tests presented in Table 6. In addition, several goodness-of-fit plots for the EGS model
for data set 2 presented in Figure 7 support this selection.

Table 5: MLEs, estimated log-likelihood, AIC, and BIC for data set 2

Model MLE log-likelihood AIC BIC

WGS θ̂ = (β̂, γ̂, α̂, ν̂) -34.45 76.9 85.6
= (0.3457, 10.2519, 1.0565, 8.1575)

EGS θ̃1 = (β̃1, α̃1, ν̃1) -117.54 241.1 247.6
= (0.4456, 1.9008, 0.9009)

WB ψ̂ = (β̂, γ̂, ω̂, τ̂) -34.80 77.6 86.3
= (0.3730, 7.0299, 359.1241, 148.9401)

EB ψ̃1 = (β̃1, ω̃1, τ̃1) -117.54 241.1 247.6
= (0.4457, 4.98942× 10−6, 1.5812)

WGP φ̂ = (β̂, γ̂, λ̂, ρ̂) -34.55 77.1 85.8
= (0.3666, 8.4830, 0.9161, 0.7723)

EGP φ̃1 = (β̃1, λ̃1, ρ̃1) -106.50 219 225.5
= (0.7791, 0.0011,−0.9902)

Table 6: Likelihood ratio and Rao’s score tests for H0 : γ = 1 (EGS) for data set 2

Test Statistic p-value Decision

Rao’s score 58.616 <0.001 Reject H0

LR 166.180 <0.001 Reject H0
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Figure 7: Goodness-of-fit plots for WGS model for data set 2

7. Conclusion and comments

In this paper, we have proposed a Weibull-generalized Sibuya distribution to analyze survival
data where only the minimum of the sample is observed and the sample size is random.
The resulting model is very flexible with decreasing, increasing, bathtub and upside-down
bathtub shaped failure rate. The generalized Sibuya distribution, which is used in proposing
the present model, is relatively new and has not received much attention in the literature. We
hope that our proposed model will be a viable alternative to the existing models available in
the literature and will be useful to the data analysts.
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Appendix A

The expressions (19) and (20) follow directly

D1(x,θ) =
∂

∂β
2F1(a, b; c; e

−(βx)γ )

=
ab

c
2F1(a+ 1, b+ 1; c+ 1; e−(βx)

γ
) e−(βx)

γ

(
−γ
β

(βx)γ
)
,

D2(x,θ) =
∂

∂γ
2F1(a, b; c; e

−(βx)γ )

=
ab

c
2F1(a+ 1, b+ 1; c+ 1; e−(βx)

γ
) e−(βx)

γ
(− (βx)γ ln(βx))

=
β

γ
ln(βx) D1(x,θ),

where a = 1, b = ν + 1− α, c = ν + 2.

To prove expression (21), let

ψ0(z) =
d

dz
ln Γ(z) =

d
dzΓ(z)

Γ(z)
,

be the polygamma function of order 0. Since

∂

∂α
(ν + 1− α)k =

∂

∂α

Γ(ν + 1− α+ k)

Γ(ν + 1− α)

= (ν + 1− α)k [ψ0(ν + 1− α)− ψ0(ν + 1− α+ k)],

it follows that

D3(x,θ) =
∂

∂α
2F1(2, ν + 1− α; ν + 2; e−(βx)

γ
)

=

∞∑
k=0

(2)k
(ν + 2)k

[
∂

∂α
(ν + 1− α)k

]
e−k(βx)

γ

k!

=

∞∑
k=0

(2)k (ν + 1− α)k
(ν + 2)k

[ψ0(ν + 1− α)− ψ0(ν + k + 1− α)]
e−k(βx)

γ

k!

= 2F1(2, ν + 1− α; ν + 2; e−(βx)
γ
) ψ0(ν + 1− α)

−
∞∑
k=0

(2)k (ν + 1− α)k
(ν + 2)k

ψ0(ν + k + 1− α)
e−k(βx)

γ

k!
.

To prove expression (22), we proceed as follows. Since

∂

∂ν

(ν + 1− α)k
(ν + 2)k

=
(ν + 1− α)k

(ν + 2)k
[ψ0(ν+2)−ψ0(ν+1−α)−ψ0(ν+2+k)+ψ0(ν+1−α+k)].

we have

D4(x,θ) =
∂

∂ν
2F1(2, ν + 1− α; ν + 2; e−(βx)

γ
)

=

∞∑
k=0

(2)k

[
∂

∂ν

(ν + 1− α)k
(ν + 2)k

]
e−k(βx)

γ

k!

=
∞∑
k=0

(2)k (ν + 1− α)k
(ν + 2)k

[
ψ0(ν + 2)− ψ0(ν + 1− α)

−ψ0(ν + 2 + k) + ψ0(ν + 1− α+ k)
] e−k(βx)γ

k!

= 2F1(2, ν + 1− α; ν + 2; e−(βx)
γ
) ψ0(ν + 2)

−
∞∑
k=0

(2)k (ν + 1− α)k
(ν + 2)k

ψ0(ν + 2 + k)
e−k(βx)

γ

k!
−D3(x,θ).
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Appendix B

This appendix presents the R codes used to calculate the density function (dweibullGS1),
distribution function (pweibullGS1), quantile function (qweibullGS1) and random num-
ber generation (rweibullGS1) for the Weibull-generalized Sibuya distribution. Thus, the
fitdistrplus package (Delignette-Muller and Dutang 2015) can be used to obtain the MLEs
and associated goodness-of-fit plots. The package gsl (Hankin 2006) is required.

## Weibull-GS1 pdf --- Equation 11

dweibullGS1 <- function(x, beta, gamma, alpha, nu)

{

if(alpha < 0 || alpha > nu +1 ) return(NaN)

aux0 <- beta * x;

aux1 <- aux0 ^ gamma;

eaux <- exp(-aux1);

F21 <- sapply(x, function(xx) hyperg_2F1(2, nu + 1 - alpha,

nu + 2, exp(-(beta * xx) ^ gamma)));

alpha / (nu + 1) * beta * gamma * aux1 / aux0 * eaux * F21;

}

## Weibull-GS1 cdf --- Equation 10

pweibullGS1 <- function(q, beta, gamma, alpha, nu)

{

F21 <- sapply(q, function(x) hyperg_2F1(1, nu + 1 - alpha,

nu + 2, exp(-(beta * x) ^ gamma)))

return(1 - alpha / (nu + 1) * exp(-(beta * q) ^ gamma) * F21);

}

## Weibull-GS1 qtf

## Calculated by solving pweibullGS1(q, beta, gamma, alpha, nu) - p = 0

qweibullGS1 <- function (p, beta, gamma, alpha, nu, L = 1e-04, U = 50)

{

fx <- function(p)

{

tryCatch(uniroot(function(q) pweibullGS1(q, beta, gamma, alpha, nu) - p,

lower = L, upper = U)$root, error = function(e) NaN)

}

qtf <- sapply(p, fx)

return(qtf)

}

## Weibull-GS1 random deviates (see Section 6)

rweibullGS1 <- function(n, beta, gamma, alpha, nu, tol = 1000)

{

i <- 0; X <- c();

while(i <= n)

{

Z <- rGSibuya(1, alpha, nu);

if(Z < 1 || Z >= tol) next;

Y <- rweibull(Z, scale = 1 / beta, shape = gamma);

X[i] <- min(Y);

i <- i + 1;

}

return(X);

}
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