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Abstract

By starting from the one-parameter Modified Borel-Tanner distribution proposed re-
cently in the statistic literature, we introduce the zero-inflated Modified Borel-Tanner
distribution. Additionally, on the basis of the proposed zero-inflated distribution, a novel
zero-inflated regression model is proposed, which is quite simple and may be an interesting
alternative to usual zero-inflated regression models for count data. The parameters of the
proposed model are estimated by Maximum Likelihood Estimation technique. To check
the potentiality of the zero inflated Modified Borel-Tanner regression, an application to
the count of infected blood cells is taken. The results suggest that the new zero inflated
Modified Borel-Tanner regression is more appropriate to model these count data than
other familiar zero-inflated (or not) regression models commonly used in practice.

Keywords: MBT distribution, count data, excess zeros, over-dispersion, zero-inflated models.

1. Introduction

Without any ambiguity, Poisson model is one of the basic and simplest count data model
and most common in practice to deal with count data. The Poisson model assumes that the
events taken into consideration occurs under the principle of complete randomness, but this
principle always does not hold true. As we are already aware that the Poisson distribution
is characterized by one parameter, has its mean equal to the variance. As the mean and
variance of the Poisson distribution are equal, we say that the Poisson distribution satisfies
the equi-dispersion property. This property is often violated in real-life count data. We have
over-dispersion (or under-dispersion) when the variance is greater (or less) than the mean.

When the principle of complete randomness fails (that is the data is either over or under-
dispersed), it is wise to use such a probabilistic model which can handle such curious situa-
tions. The basic alternative models for Poisson are Negative Binomial (NB) (Johnson, Kemp,
and Kotz 2005) and generalized Poisson (GP) model (Consul and Famoye 1989). The main
attribute of these two distributions as compared to Poisson distribution is that they have an
additional parameter, sometimes called dispersion parameter, which makes them flexible. In
the case of NB distribution , the additional parameter introduces over-dispersion and in the
GP model , over- or under-dispersion character is incorporated by the additional parameter.
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In addition to these alternative two distributions, there is vast literature available in order
to deal with over-dispersion including some new (alternative) two- and three-parameter dis-
crete distributions. Recently Déniz et al. (Gómez-Déniz, Vázquez-Polo, and Garcia 2017)
introduced a simple count distribution (namely Modified Borel- Tanner (MBT) distribution)
which has some eye catching properties like: (I) the distribution consists of one parameter;
(II) it is one of the member of exponential family of distributions; (III) it belongs to the class
of power series distribution; (IV) it is infinitely divisible; (V) it is unimodal; and (VI) variance
larger than the mean, indicating that the one-parameter MBT distribution may be useful to
model over-dispersed data. For full description about the MBT model, readers may please
refer to Déniz et al. (Gómez-Déniz et al. 2017).

A discrete random variable X has a MBT distribution, if its probability mass function (PMF)
is given by

P (X = x) =
Γ(2x+ 1)

Γ(x+ 2)Γ(x+ 1)

αx

(1 + α)2x+1
, x = 0, 1, · · · , (1)

where α ∈ (0, 1), and the notation used is X ∼ MBT(α). This distribution can also be
re-written as

P (X = x) = Cx
αx

(1 + α)2x+1
, x = 0, 1, · · · , (2)

where

Cx =
1

x+ 1

(
2x

x

)
(3)

are the Catalan numbers denoted by Cn (Olver, Lozier, Boisvert, and Clark 2010) and the
first few Catalan numbers are as: C0 = C1 = 1, C2 = 2, C3 = 5 , C4 = 14, C5 = 42, C6 = 132,
C7 = 429, C8 = 1430, C9 = 4862 and C10 = 16796.

From (1),the mean and variance are given by

E(X) =
α

1− α
, (4)

V ar(X) =
α(1 + α)

(1− α)3
, (5)

In a regression model framework, it is typically more useful to model the mean of the response
variable. So, to obtain a regression structure for the mean of the MBT distribution, we shall
work with a different parameterization of the MBT mass probability function. Let µ = α

(1−α)

and hence α = µ
1+µ . Then it follows from (4) and (5) that

E(Y ) = µ & V(Y ) = µ(1 + µ)(1 + 2µ),

where µ > 0 is the mean of the response variable Y . The new re-parametrized mass function
of MBT (µ) distribution is written as:

Pr(Y = y) = Cyµ
y (1 + µ)y+1

(1 + 2µ)2y+1
, y = 0, 1, · · · , (6)

where µ > 0 and Cy are already defined in (3). Moreover,

Pr(Y = y)

Pr(Y = y − 1)
− Pr(Y = y + 1)

Pr(Y = y)
=
−6(1 + µ)

(1 + 2µ)2

1

(y + 1)(y + 2)
< 0,

we have that the distribution is log-convex (infinitely divisible) and has decreasing failure rate

(DFR). The fact that Pr(Y=y)
Pr(Y=y−1) , y = 1, 2, ..., forms a monotone increasing sequence requires

that Pr(Y = y) be a decreasing sequence in y. Therefore, the distribution is unimodal with
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modal value on zero. In addition to it, the index of dispersion (ID) which is actually ratio of
variance to mean is

ID = 1 + 3µ+ 2µ2 > 1,

It is interesting to note that no additional parameter in the MBT model is necessary to deal
with over-dispersion, which makes the MBT model more parsimonious than other two- and
three-parameters distributions used to model data with over-dispersion.

It is already well known that sometimes count data posses extra proportion of zeros. One can
find ample amount of instances where count data exhibiting zero inflation is seen in various
fields like medical science, public health, environmental sciences, agriculture and manufac-
turing applications. Zero-inflation, an indication of over-dispersion most frequently, means
that the incidence of more zero counts than expected. A simple histogram or frequency plot
with a large spike at zero gives an early warning of possible zero inflation. The basic and
standard model for zero inflation is Zero-inflated Poisson (ZIP) model. The basic theory
behind the derivation of the ZIP model is to mix a distribution degenerate at zero with a
Poisson distribution. Since one could theoretically mix the degenerate distribution with any
count distribution, we refer to the latter (non-degenerate) distribution/model as the baseline
model. Also, over-dispersion can be the result of excess zeros or some other cause. In any
case, the result is excess variability. In some cases, the ZIP model may not be appropriate
for such data, since the baseline (Poisson) model does not accommodate the remaining over-
dispersion not accounted for through zero-inflation. Additionally, it has been established that
the ZIP parameter estimates can be severely biased if the nonzero counts are over-dispersed
in relation to the Poisson distribution, leading to serious underestimation of standard errors
and misleading inference for the regression parameters.

The motivation behind proposing the zero-inflated version of MBT model is that; it consists
of only one parameter, the probabilities of the model are monotonically decreasing in x, it
is an over-dispersed model and it has very simple closed form expressions which are easy to
deal with. Mixing a distribution degenerate at zero with a baseline MBT distribution, we will
propose the zero-Inflated Modified Borel–Tanner (ZIMBT) model given by

Pr(Y = y) =

{
π + (1− π) (1+µ)

(1+2µ) , y = 0,

(1− π)Cyµ
y (1+µ)y+1

(1+2µ)2y+1 , y > 0,
(7)

where Cy is already defined above in (3), µ > 0 and π ∈ (0, 1). If Y follows ZIMBT
distribution with parameters µ and π, then the notion used is Y ∼ ZIMBT(µ, π). It can be
noted that the PMF of ZIMBT given in 7 is very easy to handle, as it does not involve any
complicated function at all. Moreover, the mean and variance of ZIMBT(µ, π) are obtained
as:

E(Y ) = (1− π)µ, (8)

V(Y ) = (1− π)µ [µ(1 + µ)(1 + 2µ) + πµ] (9)

Since
ID = µ [(1 + µ)(1 + 2µ) + π] , µ > 0, π ∈ (0, 1).

Note that the proposed distribution is zero-inflated. To confirm this it can be observed that

zero Inflation Index (Puig and Valero 2006) is Zi = 1 + 1
(1−π)µ log

(
µ(1+π)+1

1+2µ

)
> 0.

Additionally, the probability generating function (pgf) of Y ∼ ZIMBT(µ, π) is

PY (t) = π + (1− π)

[
2(1 + µ)

µ+
√

1− 4(t− 1)µ(1 + µ) + 3

]
, |t| < 0. (10)

In this paper, we also propose a new zero-inflated regression model on the basis of the ZIMBT
distribution. So, having accounted for zero-inflation, if the data continue to suggest additional
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over-dispersion, one may consider the ZIMBT model instead of the ZIP model. Similar to
the ZIP and ZINB regression model setup, the parameters µ and π are related to covariates
(explanatory variables). Furthermore, some quantities (e.g., score function, Fisher informa-
tion matrix, etc.) related to the ZIMBT regression are simple and compact, which makes
the frequenistic approach very easy to implement.

The rest of the paper is structured are as follows: In section 2 we present the review of data
and its preliminary analysis including Poisson and ZIP regression model. The zero-inflated
Modified Borel-Tanner regression model is developed in section 3 and estimation of parameters
via ML method are being done in 3.1. An application of the proposed model on a real data
is shown in section 4 followed by concluding remarks in the last section 5.

2. Review of data and preliminary analysis

The data is taken from Crawley (2012). This data has also been used by Lemonte et al.
(Lemonte, Moreno-Arenas, and Castellares 2019). The data consists of count of infected blood
cells per square millimetre on microscope slides prepared from randomly selected individuals
of size 511. The explanatory variables are smoker (logical: yes or no), age (three levels:
under 20, 21 to 59, 60 and over), sex (male or female) and body mass score (three levels:
normal, overweight, obese). It is worth to mention that most of the patients, 314 individuals
(approximately 61.4%) showed no damaged cells, and the maximum of 7 infected cells was
observed in just two patients (#314 & #246). It is also evident from the preliminary view of
data that smokers had a substantially higher mean count than non-smokers. Initially we will
consider Poisson regression model as:

log(µi) = β0 + β1smokingi + β2genderi + β3agei + β4weighti, i = 1, 2, . . . , 511.

From Table 1, it is evident that regressors like gender is marginally non-significant while

Table 1: Parameter estimates: Poisson regression

Parameter Estimate t-value p-value
β0 -0.2200 -0.802 0.4225
β1 -1.1916 -11.399 0.0000
β2 0.2016 1.950 0.0512
β3 0.0075 0.118 0.9061
β4 0.2626 4.679 0.0000

as age is highly non-significant, therefore we will revise our model by including only three
explanatory variables; smoker, gender and weight. Now, the revised Poisson regression model
is:

log(µi) = β0 + β1smokingi + β2genderi + β3weighti, i = 1, 2, . . . , 511.

The statistical quantities like log- likelihood (LL), AIC (Akaike Information Criterion) (Akaike
1974) and BIC (Bayesian Information Criterion) (Schwarz et al. 1978) criteria are presented in
Table 2. In addition to it, the parameter estimates, their standard error (SE), and asymptotic
95% confidence interval (CI) of the Poissom regression model are given by Table 2. Usually,
regression coefficients represents the mean change in response variable for one unit change in
the predictor variable while holding the other predictors in the model constant. Therefore,
from Table 2, the coefficient for smoking indicates that for every additional smoker, we can
expect count of infected blood cells to decrease by an average of 1.1947. Other regression
coefficients of the model can be interpreted similarly as well. Further corresponding to the
estimates, their respective t-value and p-value are given in Table 3. The residual deviance
equals 851.85 , which is much greater than the residual degrees of freedom (i.e. 507), indicating
over-dispersion and hence indicates that the Poisson regression model is not suitable to model
the data.
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Table 2: Parameter estimates: Poisson regression

Parameter Estimate SE 95% CI
β0 -0.2016 0.2250 (-0.642 ; 0.239 )
β1 -1.1947 0.1011 (-1.393;-0.997 )
β2 0.2000 0.1024 (-0.001 ;0.401 )
β3 0.2630 0.0560 (0.153;0.373)
LL -682.7633
AIC 1373.527
BIC 1390.472

Table 3: Parameter estimates: Poisson regression

Parameter Estimate t-value p-value
β0 -0.2016 -0.896 0.3700
β1 -1.1947 -11.818 0.0000
β2 0.2000 1.952 0.0510
β3 0.2630 4.697 0.0000

As already mentioned earlier, classical Poisson model is the first choice to model count data,
but because of lack of fit and over-dispersion which may be due to presence of large number
of zeros in the sample, it is not always a suitable choice. So, in order to deal with extra
proportion of zeros and over-dispersion, we shall move towards ZIP regression model given by

log(µi) = β0 + β1smokingi + β2genderi + β3weighti,

log

(
πi

1 + πi

)
= γ0 + γ1smokingi + γ2genderi + β3weighti,

with i = 1, 2, . . . , 511. Table 4 shows the ML estimates of the parameters, LL, AIC, BIC
values and 95% asymptotic CI’s. Also the t-values and p-values of the estimates are being
shown in Table 5. On the basis of LL, AIC and BIC values, it clearly indicates that ZIP
model outperforms Poisson regression model for the said data. In the next Section, we will
introduce the use of the ZIMBT regression model introduced in this paper to model these
data improves considerably the fit in terms of model fitting.

Table 4: Parameter estimates: ZIP regression & 95% CI

Parameter Estimate SE 95% CI
β0 0.3939 0.2893 (-0.1731; 0.9609)
β1 -0.4852 0.1228 (-0.7259 ; -0.2445)
β2 0.0274 0.1235 (-0.2148; 0.2695)
β3 0.2471 0.0715 (0.1068; 0.3873)
γ0 -0.4320 0.6109 (-1.6295; 0.7655)
γ1 1.6308 0.3055 (1.0319; 2.2296)
γ2 -0.3932 0.2574 (-0.8977; 0.1112)
γ3 -0.0369 0.1544 (-0.3394;0.2656)
LL -605.253
AIC 1226.505
BIC 1232.28

3. ZIMBT regression model

Let Y1, Y2, ..., Yn be n independent random variables, where each Yi, for i = 1, 2, ..., n, follows
the PMF (7) with mean µi and probability πi; that is, Yi ∼ ZIMBT(µi, πi), (for i = 1, 2, ..., n).
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Table 5: Parameter estimates: ZIP regression

Parameter Estimate t-value p-value
β0 0.3939 1.362 0.1733
β1 -0.4852 -3.951 0.0001
β2 0.0274 0.222 0.8246
β3 0.2471 3.453 0.0006
γ0 -0.4320 -0.719 0.480
γ1 1.6308 5.338 0.0000
γ2 -0.3932 -1.528 0.1270
γ3 -0.0369 -0.239 0.8110

Suppose the following functional relation is established here:

log(µi) = ν1i = x>i β, log

(
πi

1− πi

)
= ν2i = s>i γ, (11)

with β = (β1, β2, ..., βp)
> and γ = (γ1, γ2, ..., γq)

> are vectors of unknown regression coeffi-
cients which are supposed to be functionally independent, β ∈ Rp and γ ∈ Rq with p+ q < n,
ν1i and ν2i are linear predictors, and x>i = (xi1, xi2, ..., xip) and s>i = (si1, si2, ..., siq) are
values of the observations on p and q known covariates (or independent variables or regres-
sors). Also, the matrices X = [x1,x2, ...,xn]> and S = [s1, s2, ..., sn]> have rank p and q,
respectively. Moreover, generally in practice, we have xi1 = si1 = 1 (for i = 1, 2, ..., n), which
corresponds to the intercept. Commonly covariates in S are subset of the covariates in X
(but not necessary). It is pertinent to mention here that similar results could be obtained for
other link functions in (11), but, the log and logit link functions are most common in such a
case.

3.1. Parameter estimation

The ML method is considered to estimate the parameter vector Θ = (β>, γ>)>. Let y =
(y1, y2, ..., yn)> be the vector of the observed responses. The log-likelihood function, except
for the constant terms, is given by

l(Θ) =
∑

yi:yi=0

log

[
eν2i +

(1 + µi)

(1 + 2µi)

]
+
∑

yi:yi>0

yi log(µi) +
∑

yi:yi>0

(yi + 1) log(1 + µi)

+
∑

yi:yi>0

(2yi + 1) log(1 + 2µi)−
n∑
i=1

log (1 + eν2i) , (12)

with µi = eν2i = eXi
>β for i = 1, 2. . . . , n. The ML estimator Θ̂ = (β̂>, γ̂>)> of Θ =

(β>, γ>)>, where β̂ = (β̂1, β̂2, . . . , β̂p)
> & γ̂ = (γ̂1, γ̂2, . . . , γ̂q)

> can be find by maximising
log-likelihood function l(Θ) (12) with respect to parameter vector Θ = (β>, γ>)>. Under
some mild regularity conditions, as n → ∞ (n is sample size), the ML estimator Θ of Θ̂ is
unique and asymptotically normal (Cox and Hinkley 1974), which will be discussed in detail
a bit later in this section.

The Score function, denoted by S(β, γ), is obtained by taking first derivative of l(Θ) with
respect to some unknown parameters, here S(β, γ) is (p + q) vector such that S(β, γ) =
(Sβ(β, γ)>, Sγ(β, γ)>)>, where Sβ(β, γ) = X>ζ, Sγ(β, γ) = S>Λ, ζ = (ζ1, ζ2, . . . , ζn)> and
Λ = (Λ1,Λ2, . . . ,Λn)>, with

ζi =

{
− eν1i

(1+2eν1i )[1+eν2i+eν1i+2eν2ieν1i ] , yi = 0,

yi + (yi+1)eν1i

(1+eν1i ) −
2(2yi+1)eν1i

(1+2eν1i ) , yi > 0,

Λi =
eν2iI(yi=0)[

eν2i + (1+µi)
(1+2µi)

] − eν2i

(1 + eν2i)
, (13)



34 ZIMBT Regression Model for Count Data

where I (·) denotes the indicator function. The ML estimates β̂ = (β̂1, β̂2, . . . , β̂p)
> and

γ̂ = (γ̂1, γ̂2, . . . , γ̂q)
>, of β = (β1, β2, . . . , βp)

> and γ = (γ1, γ2, . . . , γq)
> respectively, can also

be obtained by solving simultaneously the nonlinear system of equations Sβ(β, γ) = 0p and
Sγ(β, γ) = 0q, where 0k denotes a k-dimensional vector of zeros. These non-linear system
of equations are not in closed forms and hence can not be solved directly, therefore we have
to make use of some iterative algorithm , like Newton Raphson method, to get the ML
estimates. While using any iterative algorithm, it is always of immediate interest to choose
the appropriate initial values. For obtaining the the parameter estimates of the proposed
ZIMBT regression model we took the initial values from the estimates obtained from the
ZIP regression model, which can be easily obtained through the R function zeroinfl(· · · )
in the pscl library [Jackman (2015), Zeileis, Kleiber, and Jackman (2008)].

Since the new parametric ZIMBT regression model corresponds to a regular ML problem,
regular in the sense that it satisfies all the regularity conditions which are as: (i) the pmf is
distinct (ii) the pmfs have common support for all θ (iii) The point θ0, is the real parameter
that is, is an interior point in some set (Ω). These three conditions together guarantees that
the likelihood is maximised at the true parameter θ0 and then that the mle θ̂ that solves the
∂l
∂θ = 0 is conistent. (iv) The p(x|θ) is twice differentiable as a function of θ.

We have that the standard asymptotics apply; that is, the ML estimators of the model
parameters are asymptotically normal, asymptotically unbiased and have asymptotic variance-
covariance matrix given by the inverse of the expected Fisher information matrix. Let K(β, γ)
be the (p+ q)× (p+ q) expected Fisher information matrix for K(β, γ). Thus, we have

Θ̂
a∼ Np+q

(
Θ,K(β, γ)−1

)
,

where
a∼ means approximately distributed. It is important to find the mathematical expres-

sion for K(β, γ) which can be used to obtain asymptotic Standard Errors (SEs) for the ML
estimates. After some calculation, the expected Fisher information matrix for (β, γ) takes the
form

K(β, γ) =

[
X>D1X X>D2S
S>D2X S>D3S

]
,

where D1=diag{d1i}, D2=diag{d2i} and D3=diag{d3i} stands for a diagonal matrix with
typical element bi(i = 1, 2, . . . .n). All quantities necessary to compute the above matrices are
given below:

d1i =

{
d

(0)
1i , yi = 0,

d
(c)
1i , yi > 0,

where

d
(0)
1i = −

eν1i
(
4eν2ieν1i + 2e2ν1i − eν2i − 1

)
(1 + 2eν2i)2 [1 + eν2i + eν1i + 2eν2ieν1i ]2

,

d
(c)
1i = −(yi + 1)eν1i

(1 + eν1i)2
+

2(2yi + 1)eν1i

(1 + 2eν1i)2
,

d2i =

−
eν1i+ν2i

[1+eν1i+eν2i+2eν1i+ν2i ]
2 , yi = 0,

0, yi > 0,

d3i = −
eν2i(1 + µi)(1 + 2µi)I(yi=0)

[1 + µi + eν2i(1 + 2µi)]
2 +

eν2i

(1 + eν2i)2
.

The above asymptotic normal distribution can be used to construct approximate Confidence
Intervals (CIs) for the parameters. Let βj(j = 1, 2, . . . , p) and γk(k = 1, 2, . . . , q) be the
j-th and k-th components of β and γ, respectively. For 0 < α < 1

2 , the asymptotic CIs

β̂j±z(1−α/2)S.E(β̂j) and γ̂k±z(1−α/2)S.E(γ̂k) for βj and γk , respectively, both with asymptotic

coverage of 100(1−α)%. Here, S.E(·) is the square root of the diagonal element of K(β̂, γ̂)−1
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corresponding to each parameter (i.e. the asymptotic S.E), and z(1−α/2) denotes the (1−α/2)-
th quantile of the standard normal distribution.

4. Numerical illustration

In this section, we will examine the application of ZIMBT regression model on the real data
set whose preliminary information is already discussed in section 2. Throughout this article,
all the computations were carried with the help of R Software. Before going to ZIMBT
model, let us start from Yi ∼MBT (µi) distribution whose PMF is already given by (6).

log(µi) = β0 + β1smokingi + β2genderi + β3weighti, i = 1, 2, . . . , 511.

Table 6 lists the ML estimates, asymptotic SEs, and the 95% asymptotic CIs and Table 7 lists
ML estimates, t-values and p-values for the MBT regression parameters. Note that the MBT
regression outperforms the Poisson regression on the basis of the maximum likelihood value,
AIC and BIC values. Also it is evident from Table 7 gender is statistically non-significant.

Table 6: Parameter estimates: MBT regression & 95% CI

Parameter Estimate SE 95% CI
β0 0.0685 0.3091 (-0.537 ;0.674)
β1 -1.1215 0.2672 (-1.645 ;-0.598 )
β2 0.2204 0.2344 (-0.239 ; 0.680 )
β3 0.6566 0.2633 (0.141;1.173 8)
LL -657.46
AIC 1334.9
BIC 1377.27

Table 7: Parameter estimates: MBT regression model

Parameter Estimate t-value p-value
β0 0.0685 0.2217 0.8246
β1 -1.1215 -4.1965 0.000
β2 0.2204 0.9402 0.3471
β3 0.6566 2.4936 0.0126

Next, we will take now Yi ∼ ZIMBT (µi, π) as:

log(µi) = β0 + β1smokingi + β2genderi + β3weighti,

log

(
πi

1 + πi

)
= γ0 + γ1smokingi + γ2genderi + γ3weighti,

Table 8 shows the ML estimates, asymptotic SEs, and the 95% asymptotic CIs. Also the
corresponding t-values and p-values with respect to their estimates are presented by Table
9. From Table 8 , one can clearly claim that the ZIMBT regression model outperforms the
Poisson, ZIP and MBT regression model in terms of the maximum likelihood value, AIC and
BIC values. Also it is evident from Table 9 that the gender is statistically non-significant in
the zero and count components.

Since the familiar and immediate choice for count data regression analysis after the Poisson
and ZIP regression models is NB and Zero-inflated Negative Binomial (ZINB) regression
model, so we will fit the data by using both NB and ZINB model. The PMF of NB model is
given by

P (Y = y) =

(
φ

φ+ µ

)φ( µ

φ+ µ

)y Γ(y + φ)

Γ(y + 1)Γ(φ)
, y = 0, 1, . . . , (14)
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Table 8: Parameter estimates: ZIMBT regression & 95% CI

Parameter Estimate SE 95% CI
β0 0.0729 0.2695 (-0.455 ; 0.601)
β1 -1.1104 0.0876 (-1.282; -0.939)
β2 0.1898 0.2632 (-0.326 ; 0.706)
β3 0.7038 0.5333 (-0.341 ;1.749)
γ0 -22.6387 797.7407 (-1586.210;1540.933)
γ1 12.3109 791.1154 (-1538.275;1562.897)
γ2 -14.3000 2012.7340 (-3959.259;3930.659)
γ3 7.8987 102.6810 (-193.356;209.153)
LL -460.37
AIC 940.75
BIC 983.11

Table 9: Parameter estimates: ZIMBT regression model

Parameter Estimate t-value p-value
β0 0.0729 0.2704 0.7868
β1 -1.1104 -12.6782 0.0000
β2 0.1898 0.7213 0.4707
β3 0.7038 1.3197 0.1869
γ0 -22.6387 -0.0284 0.9774
γ1 12.3109 0.0156 0.9876
γ2 -14.3000 -0.0071 0.9943
γ3 7.8987 0.0769 0.9387

where µ > 0, φ > 0 and Γ(·) is the gamma function such that Γ(n) = (n − 1)!. Note that φ
is called dispersion parameter and as φ→∞, NB reduces to Poisson distribution. The mean

and variance of (14) is µ and (µ+ µ2

φ ). Similarly the PMF of ZINB is given by

Pr(Y = y) =

π + (1− π)
(

φ
φ+µ

)φ
, y = 0,

(1− π)
(

φ
φ+µ

)φ (
µ

φ+µ

)y
Γ(y+φ)

Γ(y+1)Γ(φ) , y > 0,
(15)

where µ > 0, φ > 0 and 0 < π < 1. Reader may please refer to Hilbe (Hilbe 2011) for further
details. we use the notations as Yi ∼ NB(µi, φ) and Yi ∼ ZINB(µi, φ, πi), i.e.,

log(µi) = β0 + β1smokingi + β2genderi + β3weighti,

log

(
πi

1 + πi

)
= γ0 + γ1smokingi + γ2genderi + γ3weighti,

with i = 1, 2, . . . , 511. Regarding the NB regression, one can make use of R function
glm.nb(· · · ) from the MASS library (Venables and Ripley 2002), where as the R function
zeroinfl(· · · ) in the pscl library can be used for the ZINB regression. The estimates corre-
sponding to the NB and ZINB regression models are listed in Tables 10 and 11, respectively.
From Tables 10 and 11, note that the ZINB regression model provides an enhancement over
the NB regression model on the basis of the maximum likelihood value, AIC and BIC.

The results of all the competing models along with ZIMBT regression model taken in to
consideration in this article are presented in a single Table 12, which shows that the ZIMBT
model outbeats Poisson, ZIP, NB, ZINB and MBT models and provides a good fit in com-
parison. Therefore, it is clearly evident from the data analysis that the proposed ZIMBT
regression model should be preferred.
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Table 10: Parameter estimates: NB regression model

Parameter Estimate (S.E) 95% CI t-value p-value
β0 -0.3039 (0.3382) ( -0.967;0.359) -0.8985 0.3689
β1 -1.1574 (0.1587) (-1.468 ;-0.846) -7.2936 0.0000
β2 0.2578 (0.1540) (-0.044;0.560) 1.6745 0.0940
β3 0.2586 (0.0876) (0.087;0.430) 2.9518 0.0032
LL -624.3465
AIC 1258.693
BIC 1279.875

Table 11: Parameter estimates: ZINB regression model

Parameter Estimate (S.E) 95% CI t-value p-value
β0 0.2305 (0.3584) (0.626; 1.122) 3.102 0.0019
β1 -0.4951 (0.1409) (-0.767;-0.283) -3.557 0.0004
β2 0.0531 (0.1435) (-0.243; 0.243) 0.003 0.9979
β3 0.2789 (0.0887) (-1.735;-0.371) -1.000 0.3170
γ0 -0.8031 (0.7867) (1.058; 2.286) 4.463 0.0000
γ1 1.7683(0.3935) (-0.923; 0.029) -1.541 0.123
γ2 -0.3909(0.2868) (-0.923; 0.029) -1.541 0.123
γ3 0.0179(0.1817) (-0.923; 0.029) -1.541 0.123
log(φ) 1.97795( 0.7278)
LL -603.6473
AIC 1225.295
BIC 1263.422

Table 12: Summaries of fitting measures results for the models considered

Criterion Poisson ZIP NB ZINB MBT ZIMBT
LL -682.763 -605.253 -624.3465 -603.6473 -657.46 -460.37

AIC 1373.527 1226.505 1258.693 1225.295 1334.9 940.75
BIC 1390.472 1232.28 1279.875 1263.422 1377.27 983.11
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5. Conclusions

With the introduction of zero-inflated Poisson regression model by Lambert (1992), there is a
significant growing interest, both in the econometrics and statistics literature, in zero-inflated
models. In short, zero-inflated models are mixture models that combine a count component
and a point mass at zero. Thus, there are two sources of zeros: zeros may come from both
the point mass and from the count component. This paper has introduced the zero-inflated
version of the already existing MBT model, which is actually a modified version of Borel-
Tanner distribution. ML technique have been employed for the estimation of parameters
Finally, we illustrate the methodology developed in this paper by means of an application to
real data. The ZIMBT regression model seems to be an interesting model in practice when
compared with some familiar regression models (including both zero-inflated or not).
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