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Abstract

The need for building and generating statistically dependent random variables arises
in various fields of study where simulation has proven to be a useful tool. In this work, we
present an approach for constructing ordinal variables with arbitrarily assigned marginal
distributions and value of association or correlation, expressed in terms of either Goodman
and Kruskal’s gamma or Pearson’s linear correlation. The approach first constructs a class
of bivariate copula-based distributions matching the assigned margins, and then, within
this class, identifies the distribution matching the assigned association or correlation, by
calibrating the copula parameter. A numerical example and a possible application are
illustrated.

Keywords: bivariate normal distribution, discretization, gamma coefficient, latent variable,
ordinal association.

1. Introduction

The need for building and drawing samples from statistically dependent random variables
emerges in various fields of study where simulation has proven to be a powerful tool. The
ability to simulate data resembling the observed data is fundamental to compare and inves-
tigate the behaviour of statistical procedures when analytical results are not derivable or are
cumbersome to derive.

Many datasets, especially those arising in the social sciences, often contain ordinal variables.
Sometimes they are genuine ordered assessments (judgements, preferences, degree of liking,
etc.) whereas in other circumstances they are discretized or categorized for convenience
(e.g., age of people in classes or education achievement). There are several statistical models
and techniques that can be employed for handling multivariate ordinal data without trying
to quantify their ordered categories: Agresti (2010) gives a thorough treatment. Among
them, correlation models and association models both study departures from independence
in contingency tables and involve the assignment of scores to the categories of the row and
column variables in order to maximize the relevant measure of relationship: the correlation
coefficient in the correlation models or the measure of intrinsic association in association
models (Faust and Wasserman 1993). Alternatively, one can code the ordered categories as
integers numbers (1, 2 . . . ,m): this amounts to assuming that the categories are evenly spaced.
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In this work, we present an approach for constructing ordinal variables with arbitrary marginal
distributions and assigned value of association, expressed in terms of either Goodman and
Kruskal’s gamma or Pearson’s linear correlation. Proposals that aim at solving similar prob-
lems have been already suggested by Lee (1997), when dealing with ordinal variables and
Goodman and Kruskal’s gamma, and by Demirtas (2006); Madsen and Dalthorp (2007); Fer-
rari and Barbiero (2012) for ordinal (and count) variables and Pearson’s correlation.

The rest of the paper is structured as follows. Section 2 states the statistical problem. Section
3 proposes a solution employing bivariate copula functions. Section 4 presents a numerical
example. Section 5 illustrates an application involving real data. Section 6 provides final
remarks.

2. Statement of the problem

Following Barbiero (2019), we consider two ordinal random variables (rvs), X and Y , with
h and k ordered categories, respectively, with marginal distributions pi· = P (X = xi), i =
1, . . . , h, and p·j = P (Y = yj), j = 1, . . . , k. We want to determine some joint probability
distribution pij = P (X = xi, Y = yj), i = 1, . . . , h, j = 1, . . . , k, such that its margins are
actually pi· and p·j , and with an assigned level of association.

Being X and Y ordinal variables, the association can be naturally expressed through the
Goodman and Kruskal’s gamma coefficient (Goodman and Kruskal 1954). Considering two
independent realizations (Xs, Ys) and (Xt, Yt) of (X,Y ), Goodman and Kruskal’s gamma is
defined as

γ =
Πc −Πd

Πc + Πd
, (1)

where Πc is the probability of concordance:

Πc = Pr {Xs < Xt and Ys < Yt}+ Pr {Xs > Xt and Ys > Yt} ,

and Πd the probability of discordance:

Πd = Pr {Xs < Xt and Ys > Yt}+ Pr {Xs > Xt and Ys < Yt} ,

and Πc and Πd can be conveniently expressed in terms of the joint probabilities pij :

Πc =
h∑
r=1

k∑
c=1

prc

∑
i<r

∑
j<c

pij +
∑
i>r

∑
j>c

pij

 , Πd =
h∑
r=1

k∑
c=1

prc

∑
i<r

∑
j>c

pij +
∑
i>r

∑
j<c

pij

 .

γ take values in the [−1,+1] interval; in particular, the values −1, 0, and +1 are attained
when Πc = 0, Πc = Πd, Πd = 0, respectively. However, a value of γ equal to ±1 implies
that the relationship between X and Y is monotone, but not strictly monotone. Moreover,
γ generally takes on larger absolute values than other association measures: to overcome
this shortcoming, a modification of Goodman and Kruskal’s coefficient has been proposed
in Kv̊alseth (2017). We notice that if the rvs X and Y are continuous, then the gamma
coefficient defined in (1) boils down to Kendall’s rank correlation τ (Kendall 1938).

If we treat X and Y as point-scale discrete variables, by assigning the first h and k posi-
tive integers, respectively, to their ordered categories, then we can use Pearson’s correlation
coefficient as a measure of association:

ρ =
E(XY )− E(X)E(Y )√

Var(X)Var(Y )
, (2)

with E(X) =
∑h

i=1 ipi·, Var(X) =
∑h

i=1(i−E(X))2pi· (analogous definitions hold for Y ), and

E(XY ) =
∑h

i=1

∑k
j=1 ijpij . Like γ, also Pearson’s correlation takes values in the [−1,+1]

interval; however, given two marginal distributions and a value ρ ∈ [−1,+1], it is not always
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possible to construct a joint distribution with those assigned margins, whose correlation is
equal to the assigned ρ (McNeil, Frey, and Embrechts 2005). In more detail, the attainable
correlations form a closed interval [ρmin, ρmax] with ρmin < 0 < ρmax. The minimum correla-
tion ρmin is attained if and only if X and Y are countermonotonic; the maximum correlation
ρmax is attained if and only if X and Y are comonotonic. Moreover, ρmin = −1 if and only if
X and −Y are of the same type, and ρmax = 1 if and only if X and Y are of the same type.
A correlation value ρ is said “feasible” if it falls within [ρmin, ρmax].

3. A two-step solution employing a parametric copula family

Finding a joint probability distribution with assigned margins and a desired (feasible) value
of association is mathematically equivalent to solving a system in h × k unknowns, the pij ,
belonging to the standard simplex, subject to h + k − 1 constraints corresponding to the
assigned margins and one further constraint dictated by the desired association. This system,
when the number of categories h or k is greater than 2, has infinite solutions, which can be
recovered more easily when using Pearson’s correlation as a measure of association, being
it a linear function in the pij (the pij appear – with power 1 – only in the term E(XY ) of
Equation 2).

Here we propose an approach to identify just one solution, i.e., one joint distribution from
among all the distributions satisfying the requirements on the margins and association value.
This procedure relies on one-parameter bivariate copulas, which allow us to split the original
problem into two sequential steps: first, identifying a class of joint distributions respecting the
assigned margins; then, within this class, finding the joint distribution matching the desired
level of association by properly calibrating the copula parameter.

3.1. Selecting a class of joint distributions having the pre-specified margins

As for the first step, if F1 and F2 are the cumulative distribution functions of the two rvs X
and Y , F1(x) = Pr{X ≤ x} and F2(y) = Pr{Y ≤ y}, and C(u, v; θ) is a bivariate parametric
copula family, characterized by some scalar parameter θ, the function

F (x, y) = C(F1(x), F2(y); θ), x, y ∈ R, (3)

defines a valid joint cumulative distribution function, whose margins are exactly F1 and
F2 (Sklar 1959). This result keeps holding if X and Y are ordinal or discrete; in this case, the
marginal cumulative probabilities are Fi· = Pr{X ≤ xi} and F·j = Pr{Y ≤ yj}, the joint cu-
mulative probabilities can be computed from the analog of Equation (3), Fi,j = C(Fi·, F·j ; θ),
and the joint probabilities are derived as:

pij = Fi,j − Fi−1,j − Fi,j−1 + Fi−1,j−1, (4)

for i = 1, . . . , h; j = 1, . . . , k.

In order to induce any feasible value of association between the two discrete margins, we
have further to impose that the copula C(u, v; θ) is “comprehensive”, i.e., by varying θ, it
encompasses the entire range of dependence, from perfect negative dependence to perfect
positive dependence passing through independence. The Gauss, Frank and Plackett copulas
are well-known examples of comprehensive copulas: Table 1 displays for each of them the
expression of the copula function and the value of their scalar parameter leading to the
countermonotonicity, independence and comonotonicity copula as special cases.

3.2. Inducing the desired value of association

As for the second step, the association between X and Y now depends only on the copula
parameter θ; this relationship may be written in an analytical or, more frequently, numerical
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Table 1: Three parametric comprehensive bivariate copulas: expressions of the copula and
parameter values for which the copula reduces to the countermonotonicity, independence, and
comonotonicity copula.

copula function C(u1, u2) counterm. indep. comon.

Gauss
∫ Φ−1(u1)

−∞
∫ Φ−1(u2)

−∞
1

2π
√

1−ρ2Ga
e
− s

2
1−2ρGas1s2+s22

2(1−ρ2
Ga

) ds1ds2 ρGa = −1 ρGa = 0 ρGa = +1

Frank − 1
κ ln

[
1 + (e−κu1−1)(e−κu2−1)

e−κ−1

]
κ→ −∞ κ→ 0 κ→ +∞

Plackett
1+(θ−1)(u1+u2)−

√
[1+(θ−1)(u1+u2)]2−4θ(θ−1)u1u2

2(θ−1) θ → 0 θ → 1 θ → +∞

form, say γ = f(θ), or ρ = g(θ). Since the function f (or g) is not usually analytically
invertible, inducing a desired feasible value of association, by setting an appropriate value
of θ, is a task that can be generally done only numerically, by finding the (unique) root
of the equation f(θ) − γ = 0 (or g(θ) − ρ = 0). If γ (or ρ) is a monotone increasing
function of the copula parameter, and this is often the case (e.g., for the Gauss, Frank,
and Plackett copulas), one can implement some iterative root-finding procedure that is more
efficient than the standard bisection method. For discrete random variables, several proposals
have been suggested for matching a desired value of Pearson’s correlation when the copula is
Gaussian, see Demirtas (2006); Madsen and Dalthorp (2007); Ferrari and Barbiero (2012). An
R implementation based on Ferrari and Barbiero (2012) is presented in Barbiero and Ferrari
(2017).

Basically, one can start by setting a trial value of the copula parameter θ and then compute
the corresponding cumulative distribution function (3), probability mass function (4), and
association (or correlation) value for the corresponding bivariate ordinal distribution – equa-
tions (1) or (2). If the resulting value of association (correlation) is equal to the assigned value
apart from an arbitrary small absolute difference ε, the algorithm stops, otherwise, one has to
iteratively update the value of θ (for example, simply using some linear interpolation) till the
corresponding value of association (or correlation) converges to the target one. If the selected
copula is the Gaussian one, with parameter ρGa, then a convenient choice of its initial trial
value can be the target ρ itself, in case the matching is on the correlation coefficient, or the
value ρGa = sin(πγ/2), in case the matching is on γ (we recall that for the Gaussian copula,
the following relationship holds between rank and linear correlation: τGa = 2

π arcsin ρGa).

Then, simulating from the selected joint distribution is straightforward, by resorting to pre-
liminary simulation of copulas or more easily to a direct inversion algorithm (Devroye 1986;
Lee 1997).

4. A numerical example

Let us consider two ordinal variables X and Y whose assigned marginal distributions are as
follows:

P (X = x1) = 1/15, P (X = x2) = 2/15, P (X = x3) = 1/5, P (X = x4) = 4/15, P (X = x5) = 1/3;

P (Y = y1) = 1/4, P (Y = y2) = 1/2, P (Y = y3) = 1/4.

Based on the two margins, one can build the cograduation and countergraduation tables,
which are reported in Table 2. Then, assuming that the ordered categories of X and Y are
evenly spaced and then can be substituted by the first h = 5 and k = 3 positive integers,
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one can compute the minimum and maximum attainable correlations, which are equal to
ρmin = −0.8693183 and ρmax = 0.8693183. We notice that ρmin is different from −1 and ρmax

is different from +1; the fact that ρmin = −ρmax is due to the symmetry of one of the two
marginal distributions, in this case that of Y .

Let us now assume that we want to construct a bivariate distribution with the above margins
and a feasible value of correlation ρ = 0.5, by employing the Gauss copula, which is char-
acterized by the scalar parameter ρGa ∈ [−1,+1]. Then one applies the algorithm sketched
in the previous section in order to find the corresponding value of ρGa. A trial value of ρGa
can be the target value ρ = 0.5 itself. Setting a maximum tolerated absolute error ε = 10−7,
after 4 iterations the final value of ρGa is computed as 0.5891106 and the resulting bivariate
distribution is displayed in Table 3. If we move to the Frank copula, it is not immediate
to set a trial value for κ; however, since we know that positive values of κ lead to positive
correlation, one should use a positive number as a starting value, say κ = 1; the final value
of the parameter ensuring the desired value of correlation is κ = 4.178493 (6 iterations). The
resulting bivariate distribution is displayed in Table 4. Finally, we consider the Plackett cop-
ula: since values greater than 1 of its parameter θ are responsible for positive correlation, one
should select the starting value of θ in (1,+∞), say θ = 2; the final value of θ provided by the
iterative search procedure after 8 iterations is 6.877371. The resulting bivariate distribution
is displayed in Table 5. Notice the differences among homologous joint probabilities across
Tables 3, 4, and 5.

Table 2: Cograduation (left) and countergraduation (right) tables for the marginal distribu-
tions of the numerical example.

X,Y y1 y2 y3 tot
x1 1/15 0 0 1/15
x2 2/15 0 0 2/15
x3 1/20 3/20 0 1/5
x4 0 4/15 0 4/15
x5 0 1/12 1/4 1/3
tot 1/4 1/2 1/4 1

X,Y y1 y2 y3 tot
x1 0 0 1/15 1/15
x2 0 0 2/15 2/15
x3 0 3/20 1/20 1/5
x4 0 4/15 0 4/15
x5 1/4 1/12 0 1/3
tot 1/4 1/2 1/4 1

Table 3: Joint distribution obtained by combining the two margins of Table 3 with a Gaussian
copula, with correlation ρ = 0.5.

X,Y y1 y2 y3 tot
x1 0.0474 0.0183 0.0010 1/15
x2 0.0661 0.0606 0.0067 2/15
x3 0.0657 0.1118 0.0225 1/5
x4 0.0500 0.1575 0.0593 4/15
x5 0.0209 0.1519 0.1606 1/3
tot 1/4 1/2 1/4 1

Figure 1 displays the graph of the function ρ = g(θ), linking the correlation coefficient to the
copula parameter, for the three classes of copula-based bivariate distributions analyzed in this
example. Although the function is monotone increasing in all the three cases, one can notice
the different shapes of the curve moving from the top to the bottom graph (almost linear,
“S”-shaped, concave), which heavily depends on the range of the copula parameter (limited,
unlimited to both sides, unlimited to the right).

Alternatively, preserving the original ordinal nature of the two variables, one can assign a
target value to the gamma coefficient, by considering the usual [−1,+1] interval, say γ = 0.5,
and then recover the value of the copula parameter ensuring this level of association given
the choice of margins. Focusing for example on the Gauss copula, by using the root-search



14 Inducing a Target Association between Ordinal Variables

Table 4: Joint distribution obtained by combining the two margins of Table 3 with a Frank
copula, with correlation ρ = 0.5.

X,Y y1 y2 y3 tot
x1 0.0417 0.0227 0.0022 1/15
x2 0.0699 0.0568 0.0066 2/15
x3 0.0713 0.1095 0.0191 1/5
x4 0.0471 0.1609 0.0587 4/15
x5 0.0199 0.1500 0.1634 1/3
tot 1/4 1/2 1/4 1

Table 5: Joint distribution obtained by combining the two margins of Table 3 with a Plackett
copula, with correlation ρ = 0.5.

X,Y y1 y2 y3 tot
x1 0.0440 0.0193 0.0033 1/15
x2 0.0720 0.0530 0.0083 2/15
x3 0.0679 0.1129 0.0193 1/5
x4 0.0428 0.1707 0.0531 4/15
x5 0.0232 0.1441 0.1660 1/3
tot 1/4 1/2 1/4 1

algorithm of Section 3.2 and setting the initial value of ρGa to sin(π · 0.5/2) = 0.7071068, we
obtain that the value ρGa = 0.4758166 allows us to recover a bivariate ordinal distribution
with the desired features.

5. An application to real data

In a now classic study of mental health in Manhattan, New York, Srole and Fischer (1978)
explore the relationship, among others, between mental impairment (Y ) and parents’ socioe-
conomic status (X), both measured on an ordinal scale. Table 6, from that study, has been
used extensively to illustrate the utility and application of models for ordered categorical
data.

Table 6: The Midtown Manhattan Study: Mental Health and Parents’ Socioeconomic Sta-
tus (Srole and Fischer, 1978). In normal font, the observed joint frequencies; in italic, be-
tween brackets, the expected joint frequencies under the bivariate ordinal model obtained
by matching the empirical marginal distributions and the sample Goodman and Kruskal’s
gamma coefficient.

Mental Health

Mild Moderate

Parents’ Socioeconomic Status Well
symptom symptom

Impaired totalformation formation

A (high) 64 (67.62 ) 94 (102.02 ) 58 (50.19 ) 46 (42.17 ) 262
B 57 (53.05 ) 94 (93.30 ) 54 (50.90 ) 40 (47.75 ) 245
C 57 (55.74 ) 105 (106.91 ) 65 (62.00 ) 60 (62.35 ) 287
D 72 (65.70 ) 141 (138.60 ) 77 (86.04 ) 94 (93.66 ) 384
E 36 (39.11) 97 (91.64) 54 (61.30) 78 (72.96) 265

F (low) 21 (25.78 ) 71 (69.53 ) 54 (51.58 ) 71 (70.11 ) 217

total 307 602 362 389 1660

We consider this dataset and compute the empirical marginal distributions for the variables
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Figure 1: Relationship between the linear correlation ρ and the copula parameter θ for three
different classes of bivariate copula-based ordinal distributions, with marginal distributions
specified in Section 4. From the top to the bottom graph, the copulas are Gauss, Frank
and Plackett. In each graph, the horizontal dashed lines represent the actual bounds for
the correlation coefficient; the dotted lines indicate the “standard” −1 and +1 bounds; the
thickened points are drawn in correspondence to ρ = 0.5.

X and Y and the sample Goodman and Kruskal’s gamma coefficient, equal to 0.15429. Then,
we construct a bivariate ordinal rv matching these two margins and their ordinal association
value, following the lines of Section 3, by choosing a Gaussian dependence structure. The
corresponding value of ρGa is computed as 0.16674 (4 iterations required with a maximum
tolerated absolute error equal to 10−7). Comparing the observed and expected joint frequen-
cies under this bivariate ordinal distribution (see Table 6) leads us to believe that this latter
fits the data more than adequately. Then, we carry out the following Monte Carlo simulation
plan: we simulate a huge number S = 10, 000 of samples of the same size n = 1, 660 of the
original dataset from the selected rv: this way, we are producing “replicates” of the original
sample, in the sense that they preserve some of its main features. This simulation plan can be
regarded to as a sort of resampling technique applied to a bivariate sample: we draw simple
random samples from a bivariate rv whose margins are exactly the empirical margins of the
sample, whose ordinal association is the sample association computed on the sample, and
whose dependence structure is Gaussian.

The results of the simulation plan are summarized in Table 7, displaying the sample mean and
standard deviation of each joint frequency across the 10, 000 simulated datasets. Obviously,
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due to the law of large numbers, the Monte Carlo averages of the joint frequencies are very
close to the corresponding expected values displayed in Table 6 between brackets. The Monte
Carlo mean of Goodman and Kruskal’s gamma is about 0.15432 with a standard deviation of
0.02545. We can notice that this latter Monte Carlo quantity is very close to the asymptotic
standard error 0.02482 which can be computed through the formula of the asymptotic variance
of the sample gamma coefficient of Equation (2.7) contained in Goodman and Kruskal (1972).
Such a Monte Carlo experiment can be also used for detecting the presence of outlying cells
in the dataset at study. For each cell (i, j), one can compute the standardized or the adjusted
residual (Haberman 1973), by considering on the observed and theoretical joint frequencies
(the figures in normal and italic font in Table 6, respectively). Based on the 10, 000 simulated
datasets, one can then build a sort of bootstrapped distribution for each adjusted residual,
instead of just computing a single value, and compare it to its asymptotic distribution, i.e.,
the standard normal.

Analogous simulation studies can be carried out by selecting a different dependence structure
(for example, by employing the Frank and Plackett copulas).

Table 7: Simulation study: Monte Carlo average and standard deviation of the joint fre-
quencies of 10, 000 replicates of the Midtown Manhattan Study dataset of Table 6, with the
same sample size n = 1, 660, drawn from a bivariate distribution preserving its marginal
distributions and ordinal association.

Y

X y1 y2 y3 y4 total

x1 67.5 (8.0) 102.1 (9.8) 50.2 (7.0) 42.1 (6.4) 261.9 (14.7)
x2 53.1 (7.1) 93.2 (9.4) 51.0 (7.1) 47.7 (6.8) 245.0 (14.5)
x3 55.6 (7.4) 106.9 (10.1) 62.0 (7.7) 62.4 (7.7) 287.0 (15.3)
x4 65.8 (8.0) 138.6 (11.3) 86.0 (9.0) 93.7 (9.3) 384.0 (17.2)
x5 39.2 (6.2) 91.5 (9.3) 61.3 (7.8) 73.0 (8.3) 265.0 (25.0)
x6 25.8 (5.0) 69.6 (8.1) 51.5 (7.1) 70.3 (8.2) 217.2 (13.7)

total 307.0 (15.7) 601.9 (19.6) 362.0 (16.9) 389.1 (17.2) 1660

6. Conclusions

We described a procedure for constructing a bivariate ordinal random variable matching two
assigned marginal distributions and a feasible assigned value of association or correlation,
expressed in terms of Goodman and Kruskal’s gamma coefficient or Pearson’s correlation.
The procedure relies on a parametric copula function (used for matching the margins) and a
root-searching algorithm (used for matching the pairwise association or correlation by varying
the copula parameter). A numerical example and a possible application are illustrated. The
procedure has been implemented in the R environment (R Core Team 2019) and relevant code
will be made freely available.

We remark that the choice of the parametric copula to employ should be based on goodness-
of-fit arguments if one is interested in generating replicates of a given dataset; otherwise, if
one just needs to draw samples with assigned margins and value of a bivariate association
measure, then the Gaussian copula is probably the most convenient choice, which usually
requires the smallest number of iterations for the root-searching algorithm. However, we
remind that the three copulas considered in this paper possess similar features: in dimension
two, they are all comprehensive, exchangeable, radially symmetric, and tail-independent.

Finally, we are aware that the concept of copula is not so natural for discrete/ordinal vari-
ables and that it may raise serious concerns in terms of model identifiability and estima-
tion (Faugeras 2017); nevertheless, it can be still effectively used as a valuable tool for building
and simulating a model with prescribed features.
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