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Abstract

The paper deals with the regression model Xt = θt+Bt , t ∈ [0, T ], where B = {Bt, t ≥
0} is a centered Gaussian process with stationary increments. We study the estimation of
the unknown parameter θ and establish the formula for the likelihood function in terms
of a solution to an integral equation. Then we find the maximum likelihood estimator
and prove its strong consistency. The results obtained generalize the known results for
fractional and mixed fractional Brownian motion.
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1. Introduction

We study the problem of the drift parameter estimation for the stochastic process

Xt = θt+Bt, (1)

where θ ∈ R is an unknown parameter, and B = {Bt, t ≥ 0} is a centered Gaussian process
with stationary increments, B0 = 0. In the particular case when B = BH is a fractional Brow-
nian motion, this model has been studied by many authors. Mention the paper by Norros,
Valkeila, and Virtamo (1999) that treats the maximum likelihood estimation by continuous
observations of the trajectory of X on the interval [0, T ] (see also Le Breton (1998)). Further,
Hu, Nualart, Xiao, and Zhang (2011) investigate the exact maximum likelihood estimator by
discrete observations at the points tk = kh, k = 1, 2, . . . , N ; Bertin, Torres, and Tudor (2011)
consider the maximum likelihood estimation in the discrete scheme of observations, where the
trajectory of X is observed at the points tk = k

N , k = 1, 2, . . . , Nα, α > 1. For hypothesis
testing of the drift parameter sign in the model (1) driven by a fractional Brownian motion,
see Stiburek (2017). The paper Cai, Chigansky, and Kleptsyna (2016) treats the likelihood
function for Gaussian processes not necessarily having stationary increments. However, on
the one hand, our approach is different from their one, it cannot be deduced from their general
formulas and on the other hand, gives rather elegant representations. The construction of
the maximum likelihood estimator in the case where B is the sum of two fractional Brow-
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nian motions was studied in Mishura (2016) and Mishura and Voronov (2015). A similar
non-Gaussian model driven by the Rosenblatt process was considered in Bertin et al. (2011).

As already mentioned, we consider the case when B is a centered Gaussian processes with
stationary increments. We construct the maximum likelihood estimators for both discrete and
continuous schemes of observations. The assumptions on the process in the continuous case
are formulated in terms of the second derivative of its covariance function, see Assumptions 1
and 2. The exact formula for the maximum likelihood estimator contains a solution of an
integral equation with the kernel obtained after the differentiation. We give the sufficient
conditions for the strong consistency of the estimators. Several examples of the process B are
considered.

The paper is organized as follows. Section 2 is devoted to the case of the discrete observations.
The maximum likelihood estimation for continuous time is studied in Section 3.

2. Maximum likelihood estimation by discrete observations

We start with the construction of the likelihood function and the maximum likelihood estima-
tor in the case of discrete observations. In the next section these results will be used for the
derivation of the likelihood function in the continuous-time case, see the proof of Theorem 3.3.

Let the process X defined by formula (1) be observed at the points tk, k = 0, 1, . . . , N ,

0 = t0 < t1 < . . . < tN ≤ T. (2)

The problem is to estimate the parameter θ by the observations Xtk , k = 0, 1, . . . , N of the
process Xt.

2.1. Likelihood function and construction of the estimator

Denote
∆X(N) =

(
Xtk −Xtk−1

)N
k=1

, ∆B(N) =
(
Btk −Btk−1

)N
k=1

.

Note that in our model Xt0 = X0 = 0, and the N -dimensional vector ∆X(N) is a one-to-one
function of the observations. The vectors ∆B(N) and ∆X(N) are Gaussian with different
means (except the case θ = 0) and the same covariance matrix. We denote this covariance
matrix by Γ(N). The next maximum likelihood estimator coincides with the least square
estimator considered in Rao (2002, eq. (4a.1.5)).

Lemma 2.1. Assume that the Gaussian distribution of the vector (Btk)Nk=1 is nonsingular.
Then one can take the function

L
(N)

∆X(N)=x
(θ) =

fθ(x)

f0(x)
= exp

{
θz>

(
Γ(N)

)−1
x− θ2

2
z>
(
Γ(N)

)−1
z

}
, (3)

where z = (tk − tk−1)Nk=1, as a likelihood function in the discrete-time model. MLE is linear
with respect to the observations and equals

θ̂(N) =
z>
(
Γ(N)

)−1
∆X(N)

z>
(
Γ(N)

)−1
z

. (4)

Proof. The pdf of ∆B(N) with respect to the Lebesgue measure equals

fθ(x) =
1

(2π)N/2
√

det Γ(N)
exp

{
−1

2
(x− θz)>

(
Γ(N)

)−1
(x− θz)

}
.

The density of the observations for given θ with respect to the distribution of the observations
for θ = 0 is taken as a likelihood function.
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Remark 2.2. Let the process X be observed on a regular grid, i.e., at the points tk = kh,
k = 1, . . . , N , where h > 0. Then Γ(N) is a Toeplitz matrix, that is

Γ
(N)
k+l,l = Γ

(N)
l,k+l = E

(
B(k+l)h −B(k+l−1)h

) (
Blh −B(l−1)h

)
= EB(k+1)hBh − EBkhBh

does not depend on l due to the stationarity of increments. This simplifies the numerical
computation of MLE.

2.2. Properties of the estimator

Since ∆X(N) = ∆B(N) + θz, the maximum likelihood estimator (4) equals

θ̂(N) = θ +
z>
(
Γ(N)

)−1
∆B(N)

z>
(
Γ(N)

)−1
z

.

Lemma 2.3. Under the assumptions of Lemma 2.1, the estimator θ̂(N) is unbiased and
normally distributed. Its variance equals

var θ̂(N) =
1

z>
(
Γ(N)

)−1
z
.

Proof. The estimator θ̂(N) is unbiased and normally distributed because θ̂(N)−θ is linear and
centered Gaussian vector ∆B(N). The variance of the estimator is equal to

var θ̂(N) =
var
(
z>
(
Γ(N)

)−1
∆B(N)

)
(
z>
(
Γ(N)

)−1
z
)2 =

z>
(
Γ(N)

)−1
var
(
∆B(N)

) (
Γ(N)

)−1
z(

z>
(
Γ(N)

)−1
z
)2

=
z>
(
Γ(N)

)−1
Γ(N)

(
Γ(N)

)−1
z(

z>
(
Γ(N)

)−1
z
)2 =

1

z>
(
Γ(N)

)−1
z
.

To prove the consistency of the estimator, we need the following technical result.

Lemma 2.4. If A ∈ RN×N is a positive definite matrix, x ∈ RN , x 6= 0 is a non-zero vector,
then

x>A−1x ≥ ‖x‖
4

x>Ax
.

Proof. As the matrix A is positive definite, x>Ax > 0 and there exists a positive definite
matrix A1/2 (and so the matrix A1/2 is symmetric and nonsingular) such that (A1/2)2 = A.
By the Cauchy-Schwarz inequality,

‖x‖4 =
(
x>A1/2A−1/2x

)2
≤
∥∥∥A1/2x

∥∥∥2 ∥∥∥A−1/2x
∥∥∥2

=
(
x>Ax

)(
x>A−1x

)
,

whence the desired inequality follows.

In the rest of this section we assume that the process X is observed on a regular grid, at the
points tk = kh, k = 1, . . . , N , for some h > 0. We also assume that for any N the Gaussian
distribution of the vector (Bkh)Nk=1 is nonsingular.

Theorem 2.5. Let h > 0, and

E
(
B(k+1)h −Bkh

)
Bh → 0 as k →∞.

Let θ̂(N) be the ML estimator of parameter θ of the model (1) by the observations Xkh,
k = 1, . . . , N . Then the estimator θ̂(N) is mean-square consistent, i.e.,

E
(
θ̂(N) − θ

)2
→ 0 as N →∞.
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Proof. By Remark 2.2, the matrix Γ(N) has Toeplitz structure,

Γ
(N)
l,m = Γ

(N)
l,m = E

(
B(|l−m|+1)h −B|l−m|h

)
Bh.

Moreover, Γ
(N)
k,l does not depend on N as soon as N ≥ max(k, l). By Toeplitz theorem,

1

N2

N∑
l=1

N∑
m=1

Γ
(N)
l,m =

1

N
E(Bh)2 −

N∑
k=2

2(N + 1− k)

N2
E
(
Bkh −B(k−1)h

)
Bh →

→ lim
k→∞

E
(
Bkh −B(k−1)h

)
Bh = 0 as N →∞.

For a regular grid we have that z = (h, . . . , h)>. Hence, in this case,

z>Γ(N)z = h2
N∑
l=1

N∑
m=1

Γ
(N)
l,m , ‖z‖ = h

√
N.

Finally, with the use of Lemma 2.3,

E
(
θ̂(N) − θ

)2
=

1

z>
(
Γ(N)

)−1
z
≤ z>Γ(N)z

‖z‖4
=

1

h2N2

N∑
l=1

N∑
m=1

Γ
(N)
l,m → 0 as N →∞.

To prove the strong consistency, we need the following auxiliary statement.

Lemma 2.6. Let h > 0, and θ̂(N) be the ML estimator of parameter θ of the model (1) by the
observations Xkh, k = 1, . . . , N . Then the random process θ̂(N) has independent increments.

Proof. In the next paragraph, N2 ≤ N3 are positive integers, (I, 0) = (IN2 , 0N2×(N3−N2)) is
N2 × N3 diagonal matrix with ones on the diagonal, and its transpose is denoted by

(
I
0

)
.

The vector ∆B(N2) = (Bh, . . . , B(N2−1)h − BN2h)> is the beginning of vector ∆B(N3) =

(Bh, . . . , B(N3−1)h − BN3h)>; the vector zN2 = (h, . . . , h)> ∈ RN2 is the beginning of vec-

tor zN3 = (h, . . . , h)> ∈ RN3 , so

∆B(N2) = (I, 0) ∆B(N3), zN2 = (I, 0) zN3 .

Then

E∆B(N3)
(
∆B(N2)

)>
= E∆N (N3)

(
∆B(N3)

)> ( I
0

)
= Γ(N3)

(
I
0

)
,

E θ̂(N3)θ̂(N2) =
E z>N3

(
Γ(N3)

)−1
∆B(N3)

(
∆B(N2)

)> (
Γ(N2)

)−1
zN2

z>N3

(
Γ(N3)

)−1
zN3

z>N2

(
Γ(N2)

)−1
zN2

=

=
z>N3

(
Γ(N3)

)−1
Γ(N3)

(
I
0

) (
Γ(N2)

)−1
zN2

z>N3

(
Γ(N3)

)−1
zN3

z>N2

(
Γ(N2)

)−1
zN2

=

=
z>N3

(
I
0

) (
Γ(N2)

)−1
zN2

z>N3

(
Γ(N3)

)−1
zN3

z>N2

(
Γ(N2)

)−1
zN2

=

=
z>N2

(
Γ(N2)

)−1
zN2

z>N3

(
Γ(N3)

)−1
zN3

z>N2

(
Γ(N2)

)−1
zN2

=
1

z>N3

(
Γ(N3)

)−1
zN3

.

For N1 ≤ N2 ≤ N3

E θ̂(N3)
(
θ̂(N2) − θ̂(N1)

)
= E θ̂(N3)θ̂(N2) − E θ̂(N3)θ̂(N1)

=
1

z>N3

(
Γ(N3)

)−1
zN3

− 1

z>N3

(
Γ(N3)

)−1
zN3

= 0;
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therefore for N1 ≤ N2 ≤ N3 ≤ N4

E
(
θ̂(N4) − θ̂(N3)

)(
θ̂(N2) − θ̂(N1)

)
= 0.

Thus, the Gaussian process {θ̂(N), N = 1, 2, . . .} is proved to have uncorrelated increments.
Hence its increments are independent.

Theorem 2.7. Under the assumptions of Theorem 2.5, the estimator θ(N) is strongly con-
sistent, i.e. θ̂(N) → θ as N →∞ almost surely.

Proof. By Theorem 2.5 var θ̂(N) → 0 as N →∞, so

var
(
θ̂(N) − θ̂(N0)

)
= var θ̂(N) + var θ̂(N0) − 2

√
var θ̂(N) var θ̂(N0) corr

(
θ̂(N), θ̂(N0)

)
→ var θ̂(N0)

as N → ∞. The process θ̂(N) has independent increments. Therefore by Kolmogorov’s
inequality, for ε > 0 and N ∈ N

P

(
sup
N≥N0

∣∣∣θ̂(N) − θ̂(N0)
∣∣∣ > ε

2

)
≤ 4

ε2
lim
N→∞

var
(
θ̂(N) − θ̂(N0)

)
=

4

ε2
var θ̂(N0).

Then, using the unbiasedness of the estimator, we get

P

(
sup
N≥N0

∣∣∣θ̂(N) − θ
∣∣∣ ≥ ε) ≤ P

(∣∣∣θ̂(N0) − θ
∣∣∣ ≥ ε

2

)
+ P

(
sup
N≥N0

∣∣∣θ̂(N) − θ̂(N0)
∣∣∣ ≥ ε

2

)
≤

≤ 4

ε2
var θ̂(N0) +

4

ε2
var θ̂(N0) =

8

ε2
var θ̂(N0) → 0 as N0 →∞,

whence |θ̂(N) − θ| → 0 as N →∞ almost surely.

Example 2.8. Let us consider the model (1) with Bt = BH1
t + BH2

t , where BH1
t and BH2

t

are two independent fractional Brownian motions with Hurst indices H1, H2 ∈ (0, 1), i. e.
centered Gaussian processes with covariance functions

EBHi
t BHi

s =
1

2

(
t2Hi + s2Hi − |t− s|2Hi

)
, t ≥ 0, s ≥ 0, i = 1, 2.

These processes have stationary increments, and

E
(
BHi

(k+1)h −B
Hi
kh

)
BHi
h ∼ h

2HiHi (2Hi − 1) k2Hi−2 → 0, as k →∞,

see e. g. (Mishura 2008, Sec. 1.2). Taking into account the independence of centered processes
BH1
t and BH2

t , we obtain that

E(B(k+1)h −Bkh)Bh = E
(
BH1

(k+1)h −B
H1
kh

)
BH1
h + E

(
BH2

(k+1)h −B
H2
kh

)
BH2
h → 0 as k →∞.

Thus, the assumptions of Theorem 2.5 are satisfied.

3. Maximum likelihood estimation by continuous observations

Let the process X be observed on the whole interval [0, T ]. It is required to estimate the
unknown parameter θ by these observations.

3.1. Likelihood function and construction of the estimator

In this section we construct a formula for continuous-time MLE, similar to the formula (4)
for the discrete case.
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Assumption 1. The covariance function of Bt has a mixed derivative

∂2

∂s ∂t
(EBtBs) = K(t− s),

where K(t) is an even function, K ∈ L1[−T, T ].

Lemma 3.1. Under Assumption 1, the integral
∫ T

0 f(t) dBt exists as the mean square limit
of the corresponding Riemann sums for any f ∈ L2[0, T ]. Moreover,

E

[∫ T

0
f(t) dBt

∫ T

0
g(s) dBs

]
=

∫ T

0
f(t)

∫ T

0
K(t− s)g(s) ds dt (5)

for any f, g ∈ L2[0, T ].

Proof. According to Huang and Cambanis (1978) (see also Cramér and Leadbetter 2004, Sec.

5.3), the integral
∫ T

0 f(t) dBt exists if and only if the double Riemann integral
∫ T

0

∫ T
0 f(t)f(s)K(t−

s) ds dt exists. Moreover, if the both integrals
∫ T

0 f(t) dBt and
∫ T

0 g(s) dBs exist, then formula
(5) holds. However, using the properties of a convolution, one can prove that∫ T

0

∫ T

0
f(t)f(s)K(t− s) ds dt ≤ ‖K‖L1[−T,T ] ‖f‖

2
L2[0,T ] <∞.

Define a linear operator ΓT : L2[0, T ]→ L2[0, T ] by

ΓT f(t) =

∫ T

0
K(t− s)f(s) ds. (6)

It follows from (6) that

E

[∫ T

0
f(t) dBt

∫ T

0
g(s) dBs

]
=

∫ T

0
ΓT f(t)g(t) dt. (7)

For a fixed set of points t1, . . . , tN which satisfy (2) define mutually adjoint linear operators
M : L2[0, T ] → RN and M∗ : RN → L2[0, T ]. If f ∈ RN , then let Mf ∈ RN be a vector
whose k-th element is equal to

∫ tk
tk−1

f(s) ds. The adjoint operator M∗ is

M∗x =

N∑
k=1

xk 1[tk−1,tk], x ∈ RN .

The basic properties of the operator ΓT are collected in the following evident lemma.

Lemma 3.2. Let Assumption 1 hold. Then

(i) The operator ΓT is bounded (‖ΓT ‖ ≤ ‖K‖L1[−T,T ]) and self-adjoint;

(ii) The following relation between the operator ΓT and the covariance matrix Γ(N) from
Proposition 2.1 holds:

MΓTM
∗ = Γ(N),

i. e., the matrix of the operator MΓTM
∗ : RN → RN equals Γ(N).

Now we are ready to formulate our key assumption on the kernel K (in terms of the opera-
tor ΓT ).

Assumption 2. For all T > 0, the constant function 1[0,T](t) = 1, t ∈ [0, T ], belongs to the
range of the operator ΓT , i. e. there exists a function hT ∈ L2[0, T ] such that

ΓThT = 1[0,T] .
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Theorem 3.3. If all finite-dimensional distributions of the process {Bt, t ∈ (0, T ]}, are
nonsingular and Assumptions 1 and 2 hold, then

L(θ) = exp

{
θ

∫ T

0
hT (s) dBs −

θ2

2

∫ T

0
hT (s) ds

}
(8)

is a likelihood function.

Proof. Let us show that the function L(θ) defined in (8) is a density function for the distri-
bution of the process Xt for a given θ with respect to the density function of a distribution
of the process Bt (it coincides with Xt when θ = 0). In other words, we need to prove that

dPθ = L(θ) dP0,

where Pθ is the probability measure that corresponds to the value of the parameter θ. It
suffices to show that for all partitions 0 = t0 < t1 < . . . < tN ≤ T of the interval [0, T ] and
for all cylinder sets A ∈ FN the following equality holds:∫

A
dPθ =

∫
A
L(θ) dP0, (9)

where FN is the σ-algebra, generated by the values Btk of the process Bt at the points tk,
k = 1, . . . , N . We have ∫

A
dPθ =

∫
A
L(N)(θ)P0,∫

A
L(θ) dP0 =

∫
A
E0[L(θ) | FN ] dP0,

where L(N) is the likelihood function (3) for the discrete-time model, and E0[ · | FN ] is the
conditional expectation corresponding to the probability measure P0. To prove (9), it suffices
to show that

L(N)(θ) = E0[L(θ) | FN ].

If θ = 0, then Xt = Bt,

E0[L(θ) | FN ] = E exp

{
θ

∫ T

0
hT (s) dBs −

θ2

2

∫ T

0
hT (s)ds

}
.

Due to joint normality of
∫ T

0 hT (s) dBs and ∆B(N), the conditional distribution of
∫ T

0 hT (s) dBs
with respect to FN is Gaussian (Anderson 2003, Theorem 2.5.1); its conditional variance is
nonrandom. Let us find its parameters. By the least squares method,

E[Bt | FN ] = E
[
Bt | ∆B(N)

]
= cov

(
Bt,∆B

(N)
)(

cov
(

∆B(N),∆B(N)
))−1

∆B(N).

We have cov
(
∆B(N),∆B(N)

)
= Γ(N). Calculate cov

(
Bt,∆B

(N)
)
:

cov
(
Bt, Btk −Btk−1

)
=

∫ t

s=0

∫ tk

u=tk−1

K(s− u) du ds,

and for any vector x = (xk)
N
k=1 ∈ RN

cov
(
Bt,∆B

(N)
)
x =

N∑
k=1

cov
(
Bt, Btk −Btk−1

)
xk =

∫ t

s=0

N∑
k=1

∫ tk

u=tk−1

K(s− u)xk du ds =

=

∫ t

0

∫ T

0
K(s− u)M∗x(u) du ds =

∫ T

0
1[0,t](s) ΓTM

∗x(s) ds =

=

∫ T

0
ΓT 1[0,t](s)M

∗x(s) ds =
(
MΓT 1[0,t]

)>
x,
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whence we get

cov
(
Bt,∆B

(N)
)

=
(
MΓT 1[0,t]

)>
.

Therefore

E[Bt | FN ] =
(
MΓT 1[0,t]

)> (
Γ(N)

)−1
∆B(N) =

∫ t

0

(
ΓTM

∗(Γ(N)
)−1

∆B(N)
)

(s) ds.

Then

E

[∫ T

0
hT (t) dBt

∣∣∣FN] =

∫ T

0
hT (s)

(
ΓTM

∗(Γ(N)
)−1

∆B(N)
)

(s) ds

=

∫ T

0
(ΓThT )(s)

(
M∗
(
Γ(N)

)−1
∆B(N)

)
(s) ds

= (MΓThT )>
(
Γ(N)

)−1
∆B(N),

where we have used that the operator ΓT is self-adjoint.

Further, MΓThT = M 1[0,T] = z, where the vector z is defined after (3). Hence,

E

[∫ T

0
hT (t) dBt

∣∣∣FN] = z>
(
Γ(N)

)−1
∆B(N).

In order to calculate the variance we apply the partition-of-variance equality

var

[∫ T

0
hT (t) dBt

]
= var

(
E

[∫ T

0
hT (t) dBt

∣∣∣FN])+ var

[∫ T

0
hT (t) dBt

∣∣∣FN] .
We have

var

[∫ T

0
hT (t) dBt

]
=

∫ T

0
(ΓThT )(t)hT (t) dt =

∫ T

0
1[0,T](t)hT (t) dt =

∫ T

0
hT (t) dt,

and

var

(
E

[∫ T

0
hT (t) dBt

∣∣∣FN]) = var
(
z>
(
Γ(N)

)−1
∆B(N)

)
= z>

(
Γ(N)

)−1
z.

Hence,

var

[∫ T

0
hT (t) dBt

∣∣∣FN] =

∫ T

0
hT (t) dt− z>

(
Γ(N)

)−1
z. (10)

Applying the formula for the mean of the log-normal distribution, we obtain

E0[L(θ) | FN ] = E exp

{
θz>

(
Γ(N)

)−1
∆B(N)

+
θ2

2

(∫ T

0
hT (t) dt− z>

(
Γ(N)

)−1
z

)
− θ2

2

∫ T

0
hT (s)ds

}
= L(N)(θ).

Thus, (9) is proved.

Corollary 3.4. The maximum likelihood estimator of θ by continuous observations is given
by

θ̂T =

∫ T
0 hT (t) dXt∫ T
0 hT (t) dt

. (11)

3.2. Properties of the estimator

It follows immediately from (11) that the maximum likelihood estimator θ̂T is equal to

θ̂T = θ +

∫ T
0 hT (t) dBt∫ T
0 hT (t) dt

. (12)
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Proposition 3.5. The estimator θ̂T is unbiased and normally distributed. Its variance is
equal to

var θ̂T = E
(
θ̂T − θ

)2
=

1∫ T
0 hT (t) dt

. (13)

Proof. Unbiasedness and normality follows from the fact that θ̂ − θ is a linear functional of
centered Gaussian process B. By (7),

var

(∫ T

0
hT (t) dBt

)
=

∫ T

0
ΓTh(t)hT (t) dt =

∫ T

0
1[0,T](t)hT (t) dt =

∫ T

0
hT (t) dt.

Thus, equation (13) immediately follows from (12).

Corollary 3.6. Let the process B = {Bt, t ≥ 0} satisfy Assumptions 1 and 2. If∫ T

0
hT (t) dt→∞, as T → +∞, (14)

then the maximum likelihood estimator θ̂T is mean-square consistent, i.e., E(θ̂T − θ)2 → 0, as
T → +∞.

It can be hard to verify the condition (14). The following result gives sufficient conditions for
the consistency in terms of the autocovariance function of B.

Theorem 3.7. Let the process B = {Bt, t ≥ 0} satisfy Assumptions 1 and 2. If the covari-
ance function of the increment process BN −BN−1 tends to 0:

E (BN+1 −BN )B1 → 0 as N →∞,

then the maximum likelihood estimator θ̂T is mean-square consistent.

Proof. The estimator θ̂(N) from the discrete sample {X1, . . . , XN} is mean-square consistent
by Theorem 2.5. The estimator from the continuous-time sample {Xt, t ∈ [0, T ]} is unbiased.
Now compare the variances of the discrete and continuous-time estimators.

The desired inequalities are got from the proof of Theorem 2.5. Suppose that T ≥ 1, N is an
integer such that N ≤ T < N + 1. By equation (10) we have∫ T

0
hT (t) dt ≥ z>

(
Γ(N)

)−1
z. (15)

As var θ̂T = 1∫ T
0 hT (t) dt

, var θ̂(N) =
(
z>
(
Γ(N)

)−1
z
)−1

, we have var θ̂T ≤ var θ̂(N), and

lim
T→+∞

E
(
θ̂T − θ

)2
= lim

N→∞
E
(
θ̂(N) − θ

)2
= 0.

To prove the strong consistency of θ̂T , we need the following auxiliary result.

Lemma 3.8. Let the process B satisfy the conditions of Theorem 3.3. Then the estimator
process θ̂ = {θ̂T , T ≥ 0} has independent increments.

Proof. Let T2 ≤ T3. Then

E

[∫ T3

0
hT3(t) dBt

∫ T2

0
hT2(s) dBs

]
=

∫ T2

0
ΓT3hT3(t)hT2(t) dt

=

∫ T2

0
1[0,T3](t)hT2(t) dt =

∫ T2

0
hT2(t) dt.



76 Maximum Likelihood Drift Estimation for Gaussian Process with Stationary Increments

Thus, if 0 < T1 ≤ T2 ≤ T3 ≤ T4, then

E(θ̂T4 − θ̂T3)(θ̂T2 − θ̂T1)

= E

(∫ T4
0 hT4(t) dBt∫ T4
0 hT4(t) dt

−
∫ T3

0 hT3(t) dBt∫ T3
0 hT3(t) dt

)(∫ T2
0 hT2(t) dBt∫ T2
0 hT2(t) dt

−
∫ T1

0 hT1(t) dBt∫ T1
0 hT1(t) dt

)
=

=
E
[∫ T4

0 hT4(t) dBt
∫ T2

0 hT2(t) dBt

]
∫ T4

0 hT4(t) dt
∫ T2

0 hT2(t) dt
−

E
[∫ T3

0 hT3(t) dBt
∫ T2

0 hT2(t) dBt

]
∫ T3

0 hT3(t) dt
∫ T2

0 hT2(t) dt
−

−
E
[∫ T4

0 hT4(t) dBt
∫ T1

0 hT1(t) dBt

]
∫ T4

0 hT4(t) dt
∫ T1

0 hT1(t) dt
+

E
[∫ T3

0 hT3(t) dBt
∫ T1

0 hT1(t) dBt

]
∫ T3

0 hT3(t) dt
∫ T1

0 hT1(t) dt
=

=
1∫ T4

0 hT4(t) dt
− 1∫ T3

0 hT3(t) dt
− 1∫ T4

0 hT4(t) dt
+

1∫ T3
0 hT3(t) dt

= 0.

Similarly to the proof of Lemma 2.6, the random process θ̂T is Gaussian and its increments
are proved to be uncorrelated so they are independent.

Theorem 3.9. Under conditions of Theorem 3.7 the estimator θ̂T is strongly consistent.

Proof. By Kolmogorov’s inequality, for any ε > 0 and t0 > 0

P

(
sup
T>t0

|θ̂T − θ| > ε

)
≤ P

(
|θ̂t0 − θ| >

ε

2

)
+ P

(
sup
T>t0

|θ̂T − θt0 | >
ε

2

)
≤

≤ 4

ε2
var θ̂t0 +

4

ε2
lim

T→+∞
var
(
θ̂T − θ̂t0

)
=

8

ε2
var θ̂t0 .

By Theorem 3.7,

lim
t0→+∞

P

(
sup
T>t0

|θ̂T − θ| > ε

)
= 0 for all ε > 0,

whence the strong consistency follows.

Remark 3.10. The Brownian motion does not satisfy Assumption 1 (as for covariance function

max(s, t) of Wiener process, ∂max(s,t)
∂t is not continuous in s). So we extend our model such

that it can handle Wiener process. Let the process B be a sum of two independent random
processes,

Bt = BC
t +Wt, (16)

where BC satisfies Assumption 1, and W is a standard Wiener process. Let us look at the
changes of the statements if the process B admits representation (16) (Assumption 1 for B
is dropped). Lemma 3.1 changes as follows:

E

[∫ T

0
f(t) dBt

∫ T

0
g(s) dBs

]
=

∫ T

0
f(t)

∫ T

0
K(t− s)g(s) ds dt+

∫ T

0
f(t)g(t) dt.

Equation (7) will stand true, if we set

ΓT f(t) = f(t) + ΓC
T f(t) = f(t) +

∫ T

0
K(t− s)f(s) ds.

Lemma 3.2 stands true (with ‖ΓT ‖ ≤ ‖K‖L1[−T,T ] + 1). Theorem 3.3 holds true; minor
changes in the proof are required.
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Table 1: The means and variances of θ̂T

H T
Sample Sample Theoretical
Mean Variance Variance

0.6
1 2.0344 1.9829 1.8292
10 2.0047 0.2584 0.2356

0.7
1 1.9995 1.9956 1.9692
10 2.0296 0.3484 0.3270

0.8
1 2.0165 2.0435 1.9930
10 2.0071 0.5155 0.4392

0.9
1 2.0117 2.0376 1.9984
10 2.0099 0.7710 0.5867

3.3. Examples

Example 3.11. Let B be a fractional Brownian motion with the Hurst index H ∈ (1/2, 1).

Then K(t) = H(2H−1)
|t|2−2H . We denote by ΓHT the corresponding operator ΓT . Then for the

function
hT (s) = CHs

1/2−H(T − s)1/2−H ,

CH =
(
H(2H − 1)B

(
H − 1

2 ,
3
2 −H

))−1
, we have that ΓHT hT = 1[0,T], see Norros et al. (1999).

The maximum likelihood estimator is given by

θ̂T =
T 2H−2

B(3/2−H, 3/2−H)

∫ T

0
s1/2−H(T − s)1/2−H dXs.

Example 3.12. Consider the following model:

Xt = θt+Wt +BH
t , (17)

where W is a standard Wiener process, BH is a fractional Brownian motion with Hurst index
H, and random processes Wt and BH

t are independent. The process Wt +BH
t admits repre-

sentation (16) with BC = BH . Corresponding operator ΓT is ΓT = I+ ΓHT (see Example 3.11
for the definition of ΓHT ). The operator ΓHT is self-adjoint and positive semi-definite. Hence,
the operator ΓT is invertible. Thus Assumption 2 holds true.

The function hT = Γ−1
T 1[0,T] can be evaluated iteratively

hT =

∞∑
k=0

(
1
2

∥∥ΓHT
∥∥ I − ΓHT

)k
1[0,T](

1 + 1
2

∥∥ΓHT
∥∥)k+1

. (18)

3.4. Simulations

We illustrate the behavior of the maximum likelihood estimator for Example 3.12 by means of
simulation experiments. For T = 1 and T = 10 and various values of H we find hT iteratively
by (18). Then for θ = 2 we simulate 1000 realizations of the process (17) for each H and
compute the estimates by (11). The means and variances of these estimates are reported
in Table 1. The theoretical variances calculated by (13) are also presented. We see that
these simulation studies confirm the theoretical properties of θ̂T , especially unbiasedness and
consistency.
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